<< Chapter < Page Chapter >> Page >

Normal acceleration

Normal (radial) acceleration acts in the direction perpendicular to tangential direction. We have seen that the normal acceleration, known as centripetal acceleration in the case of uniform circular motion, is given by :

a N = v 2 r

where “r” is the radius of the circular path. We can extend the expression of centripetal acceleration to all such trajectories of two dimensional motion, which involve radius of curvature. It is so because, radius of the circle is the radius of curvature of the circular path of motion.

In the case of tangential acceleration, we have argued that the motion should involve a change in the magnitude of velocity. Is there any such inference about normal (radial) acceleration? If motion is along a straight line without any change of direction, then there is no normal or radial acceleration involved. The radial acceleration comes into being only when motion involves a change in direction. We can, therefore, say that two components of accelerations are linked with two elements of velocity (magnitude and direction). A time rate of change in magnitude represents tangential acceleration, whereas a time rate of change of direction represents radial (normal) acceleration.

The above deduction has important implication for uniform circular motion. The uniform circular motion is characterized by constant speed, but continuously changing velocity. The velocity changes exclusively due to change in direction. Clearly, tangential acceleration is zero and radial acceleration is finite and acting towards the center of rotation.

Total acceleration

Total acceleration is defined in terms of velocity as :

a = đ v đ t

In terms of component accelerations, we can write total accelerations in the following manner :

a = a T + a N

The magnitude of total acceleration is given as :

a = | a | = | đ v đ t | = ( a T 2 + a N 2 )


a T = đ v đ t

In the nutshell, we see that time rate of change in the speed represents a component of acceleration in tangential direction. On the other hand, magnitude of time rate of change in velocity represents the magnitude of total acceleration. Vector difference of total and tangential acceleration is equal to normal acceleration in general. In case of circular motion or motion with curvature, radial acceleration is normal acceleration.

Tangential and normal accelerations in circular motion

We consider motion of a particle along a circular path. As pointed out in the section above, the acceleration is given as vector sum of two acceleration components as :

Two dimensional circular motion

There are tangential and normal components of acceleration.

a = a T + a N

a = a T t + a N n

where “ t ” and “ n ” are unit vectors in the tangential and radial directions. Note that normal direction is same as radial direction. For the motion shown in the figure, the unit vector in radial direction is :

Unit vectors

Unit vectors in tangential and normal directions.

n = 1 x cos θ i + 1 x sin θ j = cos θ i + sin θ j

Similarly, the unit vector in tangential direction is :

t = - 1 x sin θ i + 1 x cos θ j = - sin θ i + cos θ j

There is an easy way to find the sign of component, using graphical representation. Shift the vector at the origin, if the vector in question does not start from the origin. Simply imagine the component of a vector as projection on the coordinate. If the projection is on the positive side of the coordinate, then sign of component is positive; otherwise negative.

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
how to synthesize TiO2 nanoparticles by chemical methods
what's the program
what chemical
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Kinematics fundamentals. OpenStax CNX. Sep 28, 2008 Download for free at http://cnx.org/content/col10348/1.29
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Kinematics fundamentals' conversation and receive update notifications?