<< Chapter < Page Chapter >> Page >

Manifold models

Manifold models generalize the conciseness of sparsity-based signal models. In particular, in many situations where a signal isbelieved to have a concise description or “few degrees of freedom,” the result is that the signal will live on or near aparticular submanifold of the ambient signal space.

Parametric models

We begin with an abstract motivation for the manifold perspective. Consider a signal f (such as a natural image), and suppose that we can identify some single 1-D piece of information about thatsignal that could be variable; that is, other signals might rightly be called “similar” to f if they differ only in this piece of information. (For example, this 1-D parameter coulddenote the distance from some object in an image to the camera.) We let θ denote the variable parameter and write the signal as f θ to denote its dependence on θ . In a sense, θ is a single “degree of freedom” driving the generation of the signal f θ under this simple model. We let Θ denote the set of possible values of the parameter θ . If the mapping between θ and f θ is well-behaved, then thecollection of signals { f θ : θ Θ } forms a 1-D path in the ambient signal space.

More generally, when a signal has K degrees of freedom, we may model it as depending on some parameter θ that is chosen from a K -dimensional manifold Θ . (The parameter space Θ could be, for example, a subset of R K , or it could be a more general manifold such as SO(3).) We again let f θ denote the signal corresponding to a particular choice of θ , and we let F = { f θ : θ Θ } . Assuming the mapping f is continuous and injective over Θ (and its inverse is continuous), then by virtue of the manifold structure of Θ , its image F will correspond to a K -dimensional manifold embedded in the ambient signal space (see [link] (c)).

These types of parametric models arise in a number of scenarios in signal processing. Examples include: signals of unknowntranslation, sinusoids of unknown frequency (across a continuum of possibilities), linear radar chirps described by a starting andending time and frequency, tomographic or light field images with articulated camera positions, robotic systems with few physicaldegrees of freedom, dynamical systems with low-dimensional attractors  [link] , [link] , and so on.

In general, parametric signals manifolds are nonlinear (by which we mean non-affine as well); this can again be seen byconsidering the sum of two signals f θ 0 + f θ 1 . In many interesting situations, signal manifolds are non-differentiable as well.

Nonparametric models

Manifolds have also been used to model signals for which there is no known parametric model. Examples include images of faces andhandwritten digits [link] , [link] , which have been found empirically to cluster near low-dimensional manifolds.Intuitively, because of the configurations of human joints and muscles, it may be conceivable that there are relatively “few”degrees of freedom driving the appearance of a human face or the style of handwriting; however, this inclination is difficult orimpossible to make precise. Nonetheless, certain applications in face and handwriting recognition have benefitted from algorithmsdesigned to discover and exploit the nonlinear manifold-like structure of signal collections. Manifold Learning from Dimensionality Reduction discusses such methods for learning parametrizations and other information from data livingalong manifolds.

Much more generally, one may consider, for example, the set of all natural images. Clearly, this set has small volume with respect to the ambient signal space — generating an imagerandomly pixel-by-pixel will almost certainly produce an unnatural noise-like image. Again, it is conceivable that, at least locally,this set may have a low-dimensional manifold-like structure: from a given image, one may be able to identify only a limited numberof meaningful changes that could be performed while still preserving the natural look to the image. Arguably, most work insignal modeling could be interpreted in some way as a search for this overall structure.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concise signal models. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col10635/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concise signal models' conversation and receive update notifications?

Ask