<< Chapter < Page Chapter >> Page >

Range = [ f x 1 , f x 2 ]

We shall study this aspect of finding range in detail in a separate module.

Non-decreasing function or increasing

The successive value of function increases or remains constant as the value of the independent variable increases. In other words, the preceding values are less than or equal to successive values that follow. Mathematically,

If x 1 < x 2 then f x 1 f x 2

Non decreasing function

The successive function value is greater than or equal to previous value.

As f( x 1 )≤f( x 2 ) for all x 1 , x 2 ∈X, the difference “f(x+h) – f(x)” is non-negative for “h”, however small. This implies that the first derivative of function is non-negative. If we think of possibility, then we can realize that tangent to the function curve can be parallel to x-axis for a subset of X, while curve is increasing overall in the interval. It means that first derivative can be equal to zero points or sub-intervals in which it is increasing. Thus, for non-decreasing function,

f x 0 ; Equality sign holds for few points or a continuous section in X

For increasing function, if x 1 < x 2 , then f( x 1 ) ≤ f( x 2 ), for all x 1 , x 2 ∈X. This means that there may be same function values for different values of x. This is “many one” relation and as such function is not invertible in X.

Strictly decreasing function

The successive value of function decreases as the value of the independent variable increases. In other words, the preceding values are greater than successive values that follow. Mathematically,

If x 1 < x 2 then f x 1 > f x 2

Strictly decreasing function

The successive function value is less than previous value.

Problem : Determine monotonic nature of the function in the interval (-∞,0].

y = x 2

Solution : Let x 1 and x 2 belong to the interval [0,∞) such that x 1 < x 2 . Multiplying inequality with x 1 (a negative number) changes the nature of inequality :

x 1 2 > x 1 x 2

Multiplying inequality with x 2 (a negative number) changes the nature of inequality :

x 1 x 2 > x 2 2

Combining two inequalities,

x 1 2 > x 2 2 f x 1 > f x 2

Thus, given function is strictly decreasing in (-∞,0].

As f( x 1 )>f( x 2 ) for all x 1 , x 2 ∈X, the difference “f(x+h) – f(x)” is negative for “h”, however small. This implies that the first derivative of function is negative. If we think of possibility, then we can realize that tangent to the function curve can be parallel to x-axis for couple of x values, while curve is continuously decreasing in the interval. It means that first derivative can be equal to zero for few points in the interval in which it is strictly decreasing. Thus, for strictly decreasing function,

f x 0 ; Equality sign holds for points only - not on a continuous section in X

For strictly decreasing function, if x 1 < x 2 , then f( x 1 )>f( x 2 ), for all x 1 , x 2 ∈X. It means that all distinct x values correspond to distinct y values and vice-versa. Therefore, strictly decreasing function is one-one function i.e. a bijection and hence “invertible”. In other words, if a function has strict decreasing order, then it is invertible. Mathematically, we say that if f’(x) ≤ 0 (equality holding for points only); x∈X, then function is invertible in X. For example, consider sine function,

f x = sin x f x = cos x

We know that cosx is negative in the interval [π/2, 3π/2]. Hence sine function is a strictly decreasing function in [π/2, 3π/2]and is invertible. Recall though that inverse sine function is not defined in this interval, but in basic interval about origin [-π/2,π/2].

The order of a function provides an easy technique to determine range of a continuous function, corresponding to a given domain interval. For example, if domain of a continuously decreasing function, f(x), is [ x 1 , x 2 ], then the least value of the function is f( x 2 ) and greatest value of the function is f( x 1 ). Hence, range of the function is :

Range = [ f x 2 , f x 1 ]

We shall study this aspect of finding range in detail in a separate module.

Non-increasing function or decreasing

The successive value of function decreases or remains constant as the value of the independent variable increases. In other words, the preceding values are greater than or equal to successive values that follow. Mathematically,

If x 1 < x 2 then f x 1 f x 2

Non-increasing function or decreasing

The successive function value is less than or equal to previous value.

As f( x 1 )≥ f( x 2 ) for all x 1 , x 2 ∈X, the difference “f(x+h) – f(x)” is non-positive for “h”, however small. This implies that the first derivative of function is non-positive. If we think of possibility, then we can realize that tangent to the function curve can be parallel to x-axis for a subset of X, while curve is decreasing overall in the interval. It means that first derivative can be equal to zero at points or in sub-intervals in which it is decreasing. Thus, for non-decreasing function,

f x 0 ; Equality sign holds for few points or a continuous section in X

For decreasing function, if x 1 < x 2 , then f( x 1 ) ≥ f( x 2 ), for all x 1 , x 2 ∈X. This means that there may be same function values for different values of x. This is “many one” relation and as such function is not invertible in X.

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
What is power set
Satyabrata Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask