<< Chapter < Page Chapter >> Page >

If x , y A × B x A and y B

Graphical representation

The ordered pairs can be represented in the form of tabular cells or points of intersection of perpendicular lines. The elements of one set are represented as rows, whereas elements of other set are represented as columns. Look at the representation of ordered pairs by points in the figure for the example given earlier.

Cartesian product

The elements of one set are represented as rows, whereas elements of other set are represented as columns.

Note that there are a total of 9 intersection points, corresponding to 9 ordered pairs.

Examples

Problem 1 : If x 2 1, y + 2 = 0,2 , find “x” and “y”.

Solution : Two ordered pairs are equal. It means that corresponding elements of the ordered pairs are equal. Hence,

x 2 1 = 0

x = 1 o r - 1

and

y + 2 = 2

y = 0

Problem 2 : If A = {5,6,7,2}, B={3,5,6,1} and C = {4,1,8}, then find A B × B C .

Solution : In order to evaluate the given expression, we first find out the intersections given in the brackets.

A B = { 5,6 }

B C = { 1 }

Thus,

A B × B C = { 6,1 , 5,1 }

Note that the elements in the given set are not ordered. It is purposely given this way to emphasize that order is requirement of ordered pair – not that of a set.

Numbers of elements

We have seen that ordered pairs are represented graphically by the points of intersection. The numbers of intersections equal to the product of numbers of rows and columns. Thus, if there are “p” elements in the set “A” and “q” elements in the set “B”, then total numbers of ordered pairs are “pq”. In symbolic notation,

n A × B = p q

Multiple products

Like other set operations, the product operation can also be applied to a series of sets in sequence. If A 1, A 2, . . , A n is a finite family of sets, then their Cartesian product, one after another, is symbolically represented as :

A 1 × A 2 × . × A n

This product is set of group of ordered elements. Each group of ordered elements comprises of “n” elements. This is stated as :

A 1 × A 2 × × A n = { x 1, x 2, , x n : x 1 A 1, x 2 A 2, , x n A n }

Ordered triplets

The Cartesian product A × A × A is set of triplets. This product is defined as :

A × A × A = { x , y , z : x , y , z A }

We can also represent Cartesian product of a given set with itself in terms of Cartesian power. In general,

A n = A × A × × A

where “n” is the Cartesian power. If n = 2, then

A 2 = A × A

This Cartesian product is also called Cartesian square.

Example

Problem 3 : If A = {-1,1}, then find Cartesian cube of set A.

Solution : Following the method of writing ordered sequence of numbers, the product can be written as :

A × A × A = { - 1, - 1, - 1 , - 1, - 1,1 , - 1,1, - 1 ,

- 1,1,1 , 1, - 1, - 1 , 1, - 1,1 , 1,1, - 1 , 1,1,1 }

The total numbers of elements are 2x2x2 = 8.

Cartesian coordinate system

The Cartesian product, consisting of ordered triplets of real numbers, represents Cartesian three dimensional space.

R × R × R = { x , y , z : x , y , z R }

Each of the elements in the ordered triplet is a coordinate along an axis and each ordered triplet denotes a point in three dimensional coordinate space.

Cartesian coordinate system

The coordinate of a point is an ordered tripplet.

Similarly, the Cartesian product " R × R " consisting of ordered pairs defines a Cartesian plane or Cartesian coordinates of two dimensions. It is for this reason that we call three dimensional rectangular coordinate system as Cartesian coordinate system.

Commutative property of cartesian product

The Cartesian product is set of ordered pair. Now, the order of elements in the ordered pair depends on the position of sets across product sign. If sets "A" and "B" are unequal and non-empty sets, then :

A × B B × A

In general, any operation involving Cartesian product that changes the "order" in the "ordered pair" will yield different result.

However, if "A" and "B" are non-empty, but equal sets, then the significance of the order in the "ordered pair" is lost. We can use this fact to formulate a law to verify "equality of sets". Hence, if sets "A" and "B" are two non-empty sets and

A × B = B × A

Then,

A = B

It can also be verified that this condition is true other way also. If sets "A" and "B" are equal sets, then A × B = B × A . The two way conditional statements can be symbolically represented with the help of two ways arrow,

A × B = B × A A = B

Distributive property of product operator

The distributive property of product operator holds for other set operators like union, intersection and difference operators. We write equations involving distribution of product operator for each of other operators as :

A × B C = A × B A × C

A × B C = A × B A × C

A × B C = A × B A × C

Here, sets “A”,”B” and “C” are non-empty sets. In order to ascertain distributive property product operator over other set operators we need to check validity of the equations given above.

We can check these relations proceeding from the defining statements. For the time being, we reason that sequence of operation on either side of the equation does not affect the “order” in the “ordered pair”. Hence, distributive property should hold for product operator over three named operators. Let us check this with an example :

A = { a , b } , B = { 1,2 } a n d C = { 2,3 }

1: For distribution over union operator

LHS = A × B C = { a , b } × { 1,2,3 }

LHS = { a , 1 , a , 2 , a , 3 , b , 1 , b , 2 , b , 3 }

Similarly,

RHS = A × B A × C = { a , 1 , a , 2 , b , 1 , b , 2 } { a , 2 , a , 3 , b , 2 , b , 3 }

RHS = { a , 1 , a , 2 , a , 3 , b , 1 , b , 2 , b , 3 }

Hence,

A × B C = A × B A × C

2: For distribution over intersection operator

LHS = A × B C = { a , b } × { 2 }

LHS = { a , 2 , b , 2 }

Similarly,

RHS = A × B A × C = { a , 1 , a , 2 , b , 1 , b , 2 } { a , 2 , a , 3 , b , 2 , b , 3 }

RHS = { a , 2 , b , 2 }

Hence,

A × B C = A × B A × C

3: For distribution over difference operator

LHS = A × B C = { a , b } × { 1 }

LHS = { a , 1 , b , 1 }

Similarly,

RHS = A × B A × C = { a , 1 , a , 2 , b , 1 , b , 2 } { a , 2 , a , 3 , b , 2 , b , 3 }

RHS = { a , 1 , b , 1 }

Hence,

A × B C = A × B A × C

Analytical proof

Let us consider an arbitrary ordered pair (x,y), which belongs to Cartesian product set “ A × B C ”. Then,

x , y A × B C

By the definition of product of two sets,

x A a n d y B C

By the definition of union of two sets,

x A a n d y B o r y C

x A a n d y B o r x A a n d y C

x , y A × B o r x , y A × C

By the definition of union of two sets,

x , y A × B A × C

But, we had started with " A × B C " and used definitions to show that ordered pair “(x,y)” belongs to another set. It means that the other set consists of the elements of the first set – at the least. Thus,

A × B C A × B A × C

Similarly, we can start with " A × B A × C " and reach the conclusion that :

A × B A × C A × B C

If sets are subsets of each other, then they are equal. Hence,

A × B C = A × B A × C

Proceeding in the same manner, we can also prove distribution of product operator over intersection and difference operators,

A × B C = A × B A × C

A × B C = A × B A × C

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask