<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the cytoskeleton
  • Compare the roles of microfilaments, intermediate filaments, and microtubules
  • Compare and contrast cilia and flagella
  • Summarize the differences among the components of prokaryotic cells, animal cells, and plant cells

If you were to remove all the organelles from a cell, would the plasma membrane and the cytoplasm be the only components left? No. Within the cytoplasm, there would still be ions and organic molecules, plus a network of protein fibers that help maintain the shape of the cell, secure some organelles in specific positions, allow cytoplasm and vesicles to move within the cell, and enable cells within multicellular organisms to move. Collectively, this network of protein fibers is known as the cytoskeleton    . There are three types of fibers within the cytoskeleton: microfilaments, intermediate filaments, and microtubules ( [link] ). Here, we will examine each.

Microfilaments line the inside of the plasma membrane, whereas microfilaments radiate out from the center of the cell. Intermediate filaments form a network throughout the cell that holds organelles in place.
Microfilaments thicken the cortex around the inner edge of a cell; like rubber bands, they resist tension. Microtubules are found in the interior of the cell where they maintain cell shape by resisting compressive forces. Intermediate filaments are found throughout the cell and hold organelles in place.

Microfilaments

Of the three types of protein fibers in the cytoskeleton, microfilaments are the narrowest. They function in cellular movement, have a diameter of about 7 nm, and are made of two intertwined strands of a globular protein called actin ( [link] ). For this reason, microfilaments are also known as actin filaments.

This illustration shows two actin filaments wound together. Each actin filament is composed of many actin subunits connected together to form a chain.
Microfilaments are made of two intertwined strands of actin.

Actin is powered by ATP to assemble its filamentous form, which serves as a track for the movement of a motor protein called myosin. This enables actin to engage in cellular events requiring motion, such as cell division in animal cells and cytoplasmic streaming, which is the circular movement of the cell cytoplasm in plant cells. Actin and myosin are plentiful in muscle cells. When your actin and myosin filaments slide past each other, your muscles contract.

Microfilaments also provide some rigidity and shape to the cell. They can depolymerize (disassemble) and reform quickly, thus enabling a cell to change its shape and move. White blood cells (your body’s infection-fighting cells) make good use of this ability. They can move to the site of an infection and phagocytize the pathogen.

To see an example of a white blood cell in action, click here and watch a short time-lapse video of the cell capturing two bacteria. It engulfs one and then moves on to the other.

Intermediate filaments

Intermediate filaments are made of several strands of fibrous proteins that are wound together ( [link] ). These elements of the cytoskeleton get their name from the fact that their diameter, 8 to 10 nm, is between those of microfilaments and microtubules.

This illustration shows 10 intermediate filament fibers bundled together.
Intermediate filaments consist of several intertwined strands of fibrous proteins.

Intermediate filaments have no role in cell movement. Their function is purely structural. They bear tension, thus maintaining the shape of the cell, and anchor the nucleus and other organelles in place. [link] shows how intermediate filaments create a supportive scaffolding inside the cell.

Questions & Answers

there is no more other chapter
Sandeep Reply
Give tow examples for nutritional deficiency Diseases-
Singampalli Reply
How does a plant cell look like
Sang Reply
in a sleepers form
David
what do you mean ? I could not understand
Gul
a stage in mitosis wherein in spindle fibers begin to shorten to pu the sister chromatids away from each other towards the opposite ends of the cell
Earl Reply
a stage in interphase where chromosome s are duplicated
Earl
What is biodiversity
Sp Reply
Hmm
Hele
Name two secretions of Golgi apparatus
Daniel Reply
What contribute to evolution of eukaryotes
Chiquita Reply
hi
Nubia
hello
surya
how transpiration occur in aquatic plants
Sajid Reply
what is the study of allelemorph
Faith Reply
what is protein
Majid Reply
any of a class of nitrogenous organic compounds which have large molecules composed of one or more long chains of amino acids and are an essential part of all living organisms, especially as structural components of body tissues such as muscle, hair, etc., and as enzymes and antibodies.
Anirban
what is DNA replication?
Anirban Reply
separation of the DNA to produce new daughter cell. mostly in the form of meiosis
Faith
what is xenia
Mani Reply
can i get a broader difference between inductive reasoning and deductive reasoning
Daniel Reply
what are the types of tissues and there functions
Daniel
what is signal cascade?
nur Reply
it is the process by which plants produce their fo
Getabalew Reply
what are the substrates of this process
Fiko

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask