<< Chapter < Page Chapter >> Page >

Wiskunde

Grade 8

Verhoudings en eweredigheid

Meting en vormleer

Konstruksies

Module 17

Konstruksie van verskillende soorte hoeke

AKTIWITEIT 1

Om verskillende soorte hoeke en driehoeke te konstrueer

[LU 3.4, 3.5, 4.7]

1. Hoe om ‘n hoek te teken:Benodigdhede: potlood, liniaal, gradeboog.

1.1 Begin altyd met ‘n basislyn.

1.2 Maak ‘n merkie vir ‘n begin bv. links en plaas jou gradeboog op jou merkie.

1.3 Lees óf van die buitekant óf die binnekant van jou gradeboog vanaf 0°.

1.4 By hoeke groter as 180° moet jy eers die bepaalde hoek van 360° aftrek, en dan daardie betrokke hoek teken. Die hoek buitekant om (die inspringende hoek) sal dan die betrokke hoek wees wat jy moet teken.Bv. 320°: (360° – 320° = 40°). Teken nou ‘n hoek van 40°. Die inspringende hoek verteenwoordig nou die 320°.

2. Konstrueer nou die volgende hoeke en benoem elke hoek:

  • A B ˆ size 12{ { hat {B}}} {} C = 75°

Soort hoek: ______

2.2 C D ˆ size 12{ { hat {D}}} {} E = 135°

Soort hoek: ______

2.3 F G ˆ size 12{ { hat {G}}} {} H = 215°

Soort hoek: ______

3. Hoe om ‘n driehoek te konstrueer:

Benodigdhede: potlood, liniaal, gradeboog en passer.

  • Begin altyd eers deur ‘n rowwe skets te maak.
  • Gebruik dan een van die sye waarvan die lengte gegee is, as basis.
  • Bv. konstrueer Δ size 12{Δ} {} ABC met BC = 40 mm, B ˆ size 12{ { hat {B}}} {} = 70° en C ˆ size 12{ { hat {C}}} {} = 50°.

Rowwe skets:

  • Om ‘n sylengte akkuraat te meet moet jy die lengte met jou passer op jou liniaal meet en dan jou passer se punt op B sit en met die potlood ‘n “kapmerk” maak waar C moet wees.
  • Konstruksie:

4. Konstrueer nou elk van die volgende driehoeke:

4.2 Δ size 12{Δ} {} PQR met QR = 58 mm, P Q ˆ size 12{ { hat {Q}}} {} R = 62° en Q P ˆ size 12{ { hat {P}}} {} R = 69°.

Meet:

  1. PQ = mm
  2. R ˆ size 12{ { hat {R}}} {} =

4.2 Gelykbenige Δ size 12{Δ} {} ABC met BC = 42 mm, AB = AC en B ˆ size 12{ { hat {B}}} {} = 63°.

Meet:

a) PQ = mm

AKTIWITEIT 2

Om enige gegewe lyn of hoek te halveer [LU 3.4, 3.5, 4.7]

  1. Halvering van ‘n gegewe lyn AB :
  • Meet lynstuk AB (bv. 40 mm).
  • Neem jou passer en meet bietjie meer as die helfte van jou lyn (d.w.s. ± 22-25 mm).
  • Plaas jou passer se skerppunt op A en maak ‘n “kapmerk” onder en bo die lyn.
  • Plaas dan jou passer op B en maak ook ‘n “kapmerk” bo en onder die lyn.
  • Verbind die kruispunte van die twee “kapmerke” met mekaar.
  • Benoem die punt op lyn AB , P. P is nou die middelpunt van lyn AB .

2. Probeer nou self die volgende:

  • Teken ‘n lynstuk PQ = 70 mm.
  • Halveer nou lynstuk PQ , soos in nr. 1 verduidelik.

3. Halvering van π ABC :

  • Plaas jou passer se skerppunt op B .
  • Trek enige grootte boog soos aangedui.
  • Plaas jou passer se punt op die punt waar die twee lyne mekaar kruis en maak ‘n “kapmerk” binne die hoek.
  • Plaas nou jou passer se punt op die ander punt waar die twee lyne mekaar kruis en maak ‘n “kapmerk” binne die hoek, sodat jou twee “kapmerke” mekaar kruis.
  • Verbind B ˆ size 12{ { hat {B}}} {} (hoek B ) met die plek waar jou “kapmerke” mekaar kruis.
  • B ˆ size 12{ { hat {B}}} {} 1 sal nou net so groot wees soos B ˆ size 12{ { hat {B}}} {} 2 . Meet beide hoeke. Is hulle ewe groot?

4. Probeer nou self die volgende doen:

  • Teken D E ˆ size 12{ { hat {E}}} {} F . = 125°.
  • Halveer nou D E ˆ size 12{ { hat {E}}} {} F .

AKTIWITEIT 3

Om ‘n loodlyn vanuit ‘n punt op ‘n lyn te konstrueer [LU 3.4, 3.5, 4.7]

1. Konstrueer AD size 12{ ortho } {} BC .

  • Plaas jou passer se skerppunt op A (want jy wil uit A ‘n lyn loodreg op BC trek.)
  • Maak nou ‘n boog op BC .
  • Plaas jou passer se punt eers op die een punt waar die boog en BC mekaar kruis en maak ‘n “kapmerk” onder BC en dan op die ander kruispunt en maak weer ‘n “kapmerk” onder BC , sodat jou twee “kapmerke” mekaar kruis.
  • Verbind nou A met die kruispunt van die twee “kapmerke”.
  • Merk die plek waar die twee lyne mekaar sny, D .
  • AD is nou loodreg op BC . ( AD size 12{ ortho } {} BC .)

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 8. OpenStax CNX. Sep 11, 2009 Download for free at http://cnx.org/content/col11033/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 8' conversation and receive update notifications?

Ask