<< Chapter < Page
  Wiskunde graad 5   Page 1 / 1
Chapter >> Page >

Wiskunde

Getalbegrip, optelling en aftrekking

Aftrekking

Opvoeders afdeling

Memorandum

2.1 en 2.2 eie antwoord

LEERDERS AFDELING

Inhoud

Aktiwiteit: om die gelykwaardigheid en geldigheid van verskillende voorstellings te bepaal [lu 2.6]

Om strategieë te gebruik om oplossings te kontroleer [lu 1.11]

  • By aktiwiteit 3.8 het julle jul eie tegnieke en strategieë gebruik om die probleme op te los. In jul terugvoering aan die klas het jul seker gesien dat daar meer as een manier is waarop ons getalle kan aftrek. Verdeel in groepe van drie. Lees die volgende probleem goed deur en werk dan saam deur die verskillende metodes om dit op te los:

32 564 mans en 29 436 dames het na ’n rugbywedstryd gaan kyk.

  • Hoeveel meer mans as dames was daar?

1.1 Ek hou daarvan om by te tel:

32 564 – 29 436

Dus:29 436 + 64 = 29 500

29 500 + 500 = 30 000

30 000 + 2 564 = 32 564

64 + 500 + 2 564 = 3 128

Daar was dus 3 128 meer mans as dames.

1.2 Ek rond die tweede getal af tot die naaste 100 :

32 564 – 29 436

Dus: 32 564 – 29 400 = 3 164

3 164 – 36 = 3 128

Die antwoord is 3 128 meer mans.

1.3 Ek verkies om die aftrekker af te rond tot die naaste 1 000 :

32 564 – 29 436

Dus: 32 564 – 29 000 = 3 564

3 564 – 436 = 3 128

1.4 Ek werk die verskil “stuk vir stuk” (stap vir stap) uit :

32 564 – 29 436

Dus: 32 000 – 29 000 = 3 000

564 – 436 = 128

3000 + 128 = 3 128

1.5 Ek skryf die getalle eers in uitgebreide notasie:

32 564 – 29 436

Dus: 30 000 + 2 000 + 500 + 60 + 4

- 20 000 + 9 000 + 400 + 30 + 6

Nou hergroepeer ek:

20 000 + 12 000 + 500 + 50 + 14

- 20 000 + 9 000 + 400 + 30 + 6

0 + 3 000 + 100 + 20 + 8

Die antwoord is dus 3 128

1.6 Ek bereken die verskil deur met negatiewe getalle te werk:

32 564 – 29 436

Dus: 30 000 – 20 000 = 10 000

2 000 – 9 000 = – 7 000 (ek moet nog 7 000 aftrek)

500 – 400 = 100

60 – 30 = 30

4 – 6 = – 2 (ek moet nog 2 aftrek)

Die verskil is dus:

10 000 – 7 000 + 100 + 30 – 2 = 3 128

2. 2.1 Watter van bogenoemde metodes is vir JOU die maklikste? _____________________________________________________________________

Hoekom? _______________________________________________________________

_____________________________________________________________________

__________________________________________________________________________________________________________________________________________

2.2 Kan julle groep aan nog ‘n metode dink om die verskil te bereken?

_____________________________________________________________________

__________________________________________________________________________________________________________________________________________

Assessering

Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.11: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid van oplossings te beoordeel.

Leeruitkomste 2: Die leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.

Assesseringstandaard 2.6: Dit is duidelik wanneer die leerder bepaal, deur bespreking en vergelyking, die ekwivalensie van verskillende beskrywings van dieselfde verwantskap of reël wat soos volg voorgestel word:

2.6.1 woordeliks;

2.6.2 in vloeidiagramme;

2.6.3 met getalsinne.

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 5. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10993/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 5' conversation and receive update notifications?

Ask