# 2.2 Dsp00108-averaging time series  (Page 3/14)

 Page 3 / 14

Suppose, for example, that we have two time series, each of which is composed of two sinusoidal components as follows:

```f(x) = cos(ax) + cos (bx) g(x) = cos(cx) + cos(dx)```

The product of the two time series is given by:

```h(x) = f(x)*g(x) = (cos(ax) + cos (bx)) * (cos(cx) + cos(dx))```

where the asterisk (*) means multiplication.

Multiplying this out produces the following:

```h(x) = cos(ax)*cos(cx) + cos(ax)*cos(dx)+ cos(bx)*cos(cx) + cos(bx)*cos(dx)```

## A sum of products of sinusoids

Thus, the time series produced by multiplying any two time series consists of the sum of a (potentially large) number of terms, each of which is the product of two sinusoids.

## The product of two sinusoids

We probably need to learn a little about the product of two sinusoids. I will discuss this topic with a little more mathematical rigor in a future module. Inthis module, however, I will simply illustrate the topic using graphs.

Important: The product of two sinusoids is always a new time series, which is the sum of two new sinusoids.

## The frequencies of the new sinusoids

The frequencies of the new sinusoids are different from the frequencies of the original sinusoids. Furthermore, the frequency of one of the new sinusoidsmay be zero.

What is a sinusoid with zero frequency?

As a practical matter, a sinusoid with zero frequency is simply a constant value. It plots as a horizontal straight lineversus time.

Think of it this way. As the frequency of the sinusoid approaches zero, the period, (which is the reciprocal of frequency), approaches infinity. Thus, the width of the first lobe of the sinusoid widens, causing every value in thatlobe to be the same as the first value.

This will become a very important concept as we pursue DSP operations.

## Sum and difference frequencies

More specifically, when you multiply two sinusoids, the frequency of one of the sinusoids in the new time series is the sum of the frequencies of the two sinusoids that were multiplied together. The frequency of the othersinusoid in the new time series is the difference between the frequencies of the two sinusoids that were multiplied together.

## An important special case

For the special case where the two original sinusoids have the same frequency, the difference frequency is zero and one of the sinusoids in the newtime series has a frequency of zero. It is this special case that makes digital filtering and digital spectrum analysis possible.

## Many sinusoidal products

When we multiply two time series and compute the average of the resulting time series, we are in effect computing the average of the products of all theindividual sinusoidal components contained in the two time series. That is, the new time series contains the products of (potentially many) individual sinusoids contained in the two original time series. In the end, it all comesdown to computing the average value of products of sinusoids.

## Product of sinusoids with same frequency

The product of any pair of sinusoids that have the same frequency will produce a time series containing the sum of two sinusoids. One of the sinusoidswill have a frequency of zero (hence it will have a constant value). The other sinusoid will have a frequency that is double the frequency of theoriginal sinusoids.

what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
how to synthesize TiO2 nanoparticles by chemical methods
Zubear
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!