<< Chapter < Page Chapter >> Page >
This module defines eigenvalues and eigenvectors and explains a method of finding them given a matrix. These ideas are presented, along with many examples, in hopes of leading up to an understanding of the Fourier Series.

In this section, our linear systems will be n×n matrices of complex numbers. For a little background into some of theconcepts that this module is based on, refer to the basics of linear algebra .

Eigenvectors and eigenvalues

Let A be an n×n matrix, where A is a linear operator on vectors in n .

A x b
where x and b are n×1 vectors ( [link] ).

Illustration of linear system and vectors.
eigenvector
An eigenvector of A is a vector v n such that
A v λ v
where λ is called the corresponding eigenvalue . A only changes the length of v , not its direction.

Graphical model

Through [link] and [link] , let us look at the difference between [link] and [link] .

Represents [link] , A x b .

If v is an eigenvector of A , then only its length changes. See [link] and notice how our vector's length is simply scaled by our variable, λ , called the eigenvalue :

Represents [link] , A v λ v .

When dealing with a matrix A , eigenvectors are the simplest possible vectors to operate on.

Examples

From inspection and understanding of eigenvectors, find the two eigenvectors, v 1 and v 2 , of A 3 0 0 -1 Also, what are the corresponding eigenvalues, λ 1 and λ 2 ? Do not worry if you are having problems seeing these values from the information given so far,we will look at more rigorous ways to find these values soon.

The eigenvectors you found should be: v 1 1 0 v 2 0 1 And the corresponding eigenvalues are λ 1 3 λ 2 -1

Got questions? Get instant answers now!

Show that these two vectors, v 1 1 1 v 2 1 -1 are eigenvectors of A , where A 3 -1 -1 3 . Also, find the corresponding eigenvalues.

In order to prove that these two vectors are eigenvectors, we will show that these statements meetthe requirements stated in the definition . A v 1 3 -1 -1 3 1 1 2 2 A v 2 3 -1 -1 3 1 -1 4 -4 These results show us that A only scales the two vectors ( i.e. changes their length) and thus it proves that [link] holds true for the following two eigenvalues that you were asked to find: λ 1 2 λ 2 4 If you need more convincing, then one could also easilygraph the vectors and their corresponding product with A to see that the results are merely scaled versions of our original vectors, v 1 and v 2 .

Got questions? Get instant answers now!

Khan lecture on eigenvectors

video from Khan Academy - Introduction to Eigenvectors and Eigenvalues - 7:43 min.

Calculating eigenvalues and eigenvectors

In the above examples, we relied on your understanding of thedefinition and on some basic observations to find and prove the values of the eigenvectors and eigenvalues. However, as youcan probably tell, finding these values will not always be that easy. Below, we walk through a rigorous and mathematicalapproach at calculating the eigenvalues and eigenvectors of a matrix.

Finding eigenvalues

Find λ such that v 0 , where 0 is the "zero vector." We will start with [link] , and then work our way down until we find a way to explicitly calculate λ . A v λ v A v λ v 0 A λ I v 0 In the previous step, we used the fact that λ v λ I v where I is the identity matrix. I 1 0 0 0 1 0 0 0 0 1 So, A λ I is just a new matrix.

Given the following matrix, A , then we can find our new matrix, A λ I . A a 1 1 a 1 2 a 2 1 a 2 2 A λ I a 1 1 λ a 1 2 a 2 1 a 2 2 λ

Got questions? Get instant answers now!

If A λ I v 0 for some v 0 , then A λ I is not invertible . This means: A λ I 0 This determinant (shown directly above) turns out to be a polynomial expression (of order n ). Look at the examples below to see what this means.

Starting with matrix A (shown below), we will find the polynomial expression, where our eigenvalues will be the dependent variable. A 3 -1 -1 3 A λ I 3 λ -1 -1 3 λ A λ I 3 λ 2 -1 2 λ 2 6 λ 8 λ 2 4

Got questions? Get instant answers now!

Starting with matrix A (shown below), we will find the polynomial expression, where our eigenvalues will be the dependent variable. A a 1 1 a 1 2 a 2 1 a 2 2 A λ I a 1 1 λ a 1 2 a 2 1 a 2 2 λ A λ I λ 2 a 1 1 a 2 2 λ a 2 1 a 1 2 a 1 1 a 2 2

Got questions? Get instant answers now!

If you have not already noticed it, calculating the eigenvalues is equivalent to calculating the roots of A λ I c n λ n c n 1 λ n 1 c 1 λ c 0 0

Therefore, by simply using calculus to solve for the roots of our polynomial we can easily find the eigenvalues of ourmatrix.

Finding eigenvectors

Given an eigenvalue, λ i , the associated eigenvectors are given by A v λ i v A v 1 v n λ 1 v 1 λ n v n set of n equations with n unknowns. Simply solve the n equations to find the eigenvectors.

Khan lecture on deriving eigenvectors and eigenvalues

video from Khan Academy - Example Deriving Eignevectors and Eigenvalues - 5:39 min.

Main point

Say the eigenvectors of A , v 1 v 2 v n , span n , meaning v 1 v 2 v n are linearly independent and we can write any x n as

x α 1 v 1 α 2 v 2 α n v n
where α 1 α 2 α n . All that we are doing is rewriting x in terms of eigenvectors of A . Then, A x A α 1 v 1 α 2 v 2 α n v n A x α 1 A v 1 α 2 A v 2 α n A v n A x α 1 λ 1 v 1 α 2 λ 2 v 2 α n λ n v n b Therefore we can write, x i α i v i and this leads us to the following depicted system:

Depiction of system where we break our vector, x , into a sum of its eigenvectors.

where in [link] we have, b i α i λ i v i

By breaking up a vector, x , into a combination of eigenvectors, the calculation of A x is broken into "easy to swallow" pieces.

Practice problem

For the following matrix, A and vector, x , solve for their product. Try solving it using two differentmethods: directly and using eigenvectors. A 3 -1 -1 3 x 5 3

Direct Method (use basic matrix multiplication) A x 3 -1 -1 3 5 3 12 4 Eigenvectors (use the eigenvectors and eigenvalues we found earlier for this same matrix) v 1 1 1 v 2 1 -1 λ 1 2 λ 2 4 As shown in [link] , we want to represent x as a sum of its scaled eigenvectors. For this case, we have: x 4 v 1 v 2 x 5 3 4 1 1 1 -1 A x A 4 v 1 v 2 λ i 4 v 1 v 2 Therefore, we have A x 4 2 1 1 4 1 -1 12 4 Notice that this method using eigenvectors required no matrix multiplication. This may have seemed more complicated here, but just imagine A being really big, or even just a few dimensions larger!

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask