<< Chapter < Page Chapter >> Page >

Large-amplitude wavelet coefficients can detect and measure short high-frequency variations because they have a narrow timelocalization at high frequencies. At low frequencies their time resolution is lower, but they have a better frequency resolution.This modification of time and frequency resolution is adapted to represent sounds with sharp attacks, or radar signals having afrequency that may vary quickly at high frequencies.

Multiscale zooming

A wavelet dictionary is also adapted to analyze the scaling evolution of transientswith zooming procedures across scales. Suppose now that ψ is real. Since it has a zero average, a wavelet coefficient W f ( u , s ) measures the variation of f in a neighborhood of u that has a size proportional to s . Sharp signal transitionscreate large-amplitude wavelet coefficients.

Heisenberg time-frequency boxes of two wavelets, ψ u , s and ψ u 0 , s 0 . When thescale s decreases, the time support is reduced but the frequency spread increases and covers an intervalthat is shifted toward high frequencies.

Signal singularities have specific scaling invariance characterized by Lipschitz exponents. Chapter 6 relates the pointwiseregularity of f to the asymptotic decay of the wavelet transform amplitude | W f ( u , s ) | when s goes to zero. Singularities are detected by followingthe local maxima of the wavelet transform acrossscales.

In images, wavelet local maxima indicate the position of edges, which aresharp variations of image intensity. It defines scale–space approximation support of f from which precise image approximations are reconstructed.At different scales, the geometry of this local maxima support provides contoursof image structures of varying sizes. This multiscale edge detection is particularly effective forpattern recognition in computer vision (Canny:86).

The zooming capability of the wavelet transform not only locates isolated singular events, but canalso characterize more complex multifractal signalshaving nonisolated singularities. Mandelbrot (Mandelbrot:82) was the first to recognizethe existence of multifractals in most corners of nature. Scaling one part of a multifractalproduces a signal that is statistically similar to the whole. This self-similarityappears in the continuous wavelet transform, which modifies the analyzing scale.From global measurements of the wavelet transform decay, Chapter 6 measuresthe singularity distribution of multifractals. This is particularly important in analyzing theirproperties and testing multifractal models in physics or in financial time series.

Time-frequency orthonormal bases

Orthonormal bases of time-frequency atoms remove all redundancy and define stablerepresentations. A wavelet orthonormal basis is an example of the time-frequency basis obtained by scaling a wavelet ψ with dyadic scales s = 2 j and translating it by 2 j n , which is written ψ j , n . In the time-frequency plane, the Heisenberg resolution box of ψ j , n is a dilation by 2 j and translation by 2 j n of the Heisenberg box of ψ . A wavelet orthonormal is thus a subdictionary of thecontinuous wavelet transform dictionary, which yields a perfecttiling of the time-frequency plane illustrated in [link] .

The time-frequency boxes of a wavelet basis define a tiling of the time-frequency plane.

One can construct many other orthonormal bases of time-frequency atoms, corresponding to different tilings of the time-frequency plane.Wavelet packet and local cosine bases are two important examples constructed in Chapter 8, withtime-frequency atoms that split the frequency and the time axis, respectively, in intervals of varying sizes.

Wavelet packet bases

Wavelet bases divide the frequency axis into intervals of 1 octave bandwidth. Coifman, Meyer, and Wickerhauser (CoifmanMW:92) havegeneralized this construction with bases that split the frequency axis in intervals of bandwidth that may be adjusted.Each frequency interval is covered by the Heisenberg time-frequency boxesof wavelet packet functions translated in time, in order to cover the whole plane, as shown by [link] .

As for wavelets, wavelet-packet coefficients are obtained with a filter bank of conjugate mirror filters that split the frequency axisin several frequency intervals. Different frequency segmentations correspond to different waveletpacket bases. For images, a filter bank divides the image frequency support in squares of dyadic sizes thatcan be adjusted.

A wavelet packet basis divides the frequency axis in separate intervals of varying sizes. A tiling is obtainedby translating in time the wavelet packets covering each frequency interval.

Local cosine bases

Local cosine orthonormal bases are constructed by dividing the timeaxis instead of the frequency axis. The time axis is segmented in successive intervals [ a p , a p + 1 ] . The local cosine bases of Malvar (Malvar:88) are obtainedby designing smooth windows g p ( t ) that cover each interval [ a p , a p + 1 ] , and by multiplying them by cosine functions cos ( ξ t + φ ) of different frequencies. This is yet another idea that has beenindependently studied in physics, signal processing, and mathematics.Malvar's original construction was for discrete signals. At the same time, the physicist Wilson (Wilson:87)was designing a local cosine basis, with smooth windows of infinite support, to analyze theproperties of quantum coherent states. Malvar bases were also rediscovered and generalizedby the harmonic analysts Coifman and Meyer (CoifmanM:91). These different views of the same bases brought tolight mathematical and algorithmic properties that opened new applications.

A multiplication by cos ( ξ t + φ ) translates the Fourier transform g ^ p ( ω ) of g p ( t ) by ± ξ . Over positive frequencies,the time-frequency box of the modulated window g p ( t ) cos ( ξ t + φ ) is therefore equal to the time-frequency box of g p translated by ξ along frequencies. [link] shows the time-frequency tiling corresponding to such alocal cosine basis. For images, a two-dimensional cosine basis is constructed by dividing theimage support in squares of varying sizes.

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, A wavelet tour of signal processing, the sparse way. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col10711/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'A wavelet tour of signal processing, the sparse way' conversation and receive update notifications?

Ask