<< Chapter < Page
  Class   Page 1 / 1
Chapter >> Page >
physics course for non-physicist complex systems researchers

Physics in the science of complex systems – draft 0

The lectures are organized in lessons within thematic courses.

General introduction

Thermal and statistical physics

The main chapters are copied from the courses of Harvey Gould and Jan Tobochnik , Clark University, Worcester, MA, USA. If not, the source is precised intobrackets.

(External Link)

1.1 from microscopic to macroscopic behavior: statistical physics

Lesson 1

  • Introduction
  • Some qualitative observations
  • Doing work
  • Quality of energy

Lesson 2

  • Some simple simulations
  • Work, heating, and the first law of thermodynamics
  • The fundamental need for statistical approach
  • Time and ensemble averages

Lesson 3

  • Models of matter

The ideal gas

Interparticle potentials

Lattice models

  • Importance of simulations
  • Summary

Additional problems

Suggestions for further reading

1.2 thermodynamic concepts

Lesson 4

  • Introduction
  • The system
  • Thermodynamic equilibrium
  • Temperature
  • Pressure equation of state

Lesson 5

  • Some thermodynamic processes
  • Work
  • The first law of thermodynamics
  • Energy equation of state

Lesson 6

  • Heat capacity and enthalpy
  • Adiabatic processes
  • The second law of thermodynamics
  • The thermodynamic temperature

Lesson 7

  • The second law and heat engine
  • Entropy changes
  • Equivalence of thermodynamic and ideal gas scale temperatures
  • The thermodynamic pressure

Lesson 8

  • The fundamental thermodynamic relation
  • The entropy of an ideal gas
  • The third law of thermodynamics
  • Free energies

Additional problems

Suggestions for further reading

1.3 statistical mechanics

Lesson 9

  • Introduction
  • A simple example of a thermal interaction
  • Counting microstates

Non-interacting spins

One-dimensional Ising model

A particle in a one-dimensional box

One-dimensional harmonic oscillator

A particle in a two-dimensional box

Two non-interacting identical particles and the semi-classical limit

Lesson 10

  • The number of states of N non-interacting particles: semi- classical limit
  • The microcanonical ensemble (fixed E, V, and N)
  • Systems in contact with a heat bath: the canonical ensemble (fixed T, V, and N)
  • Connection between statistical mechanics and thermodynamics

Lesson 11

  • Simple applications of the canonical ensemble
  • Example of a simple thermometer
  • Simulations of the microcanonical ensemble
  • Simulations of the canonical ensemble

Lesson 12

  • Grand canonical ensemble (fixed T, V, and )
  • Entropy and disorder
  • The volume of a hypersphere
  • Fluctuations in the canonical ensemble
  • Molecular dynamics

(Course from North Carolina State University, Raleigh, NC, USA:

(External Link) )

Additional problems

Suggestions for further reading

1.4 thermodynamic relations and processes

Lesson 13

1.4.1 Introduction

1.4.2 Maxwell relations

1.4.3 Applications of the Maxwell relations

Internal energy of an ideal gas

Relation between the specific heats

Lesson 14

1.4.4 Applications to irreversible processes

The Joule or free expansion process

Joule-Thomson process

  • Equilibrium between phases

Equilibrium conditions

Clausius-Clapeyron equation

Simple phase diagrams

Pressure dependence of the melting point

Pressure dependence of the boiling point

The vapor pressure curve

Lesson 15

  • Lattice gas and Ising model

(Introduction to lattice gas from Victor Batista, Chemistry department, Yale University, New Haven, NE, USA:

(External Link) )

(Applet of ising model, from A. Peter young, Physics department, University of California, San Diego, CA, USA:

http://bartok.ucsc.edu/peter/java/ising/keep/ ising.html)

  • Phase transitions

(Generalities from Wikipedia:

http://en.wikipedia.org/wiki/ Phase_transition)

  • A geometric phase transition: percolation

(Lectures notes from the MIT NSE Virtual Reading Room, Massachusetts Institute of Technology, Cambridge, MA, USA:

(External Link) )

Lesson 16

  • Brownian motion

(Introduction from the physics department of the University of Queensland, Brisbane, Australia:

http://www.physics.uq.edu.au/people/mcintyre/ php/laboratories/download_file.php?eid=38)

  • Chaos and self-organization

(Introduction to chaos theory from the center of complex quantum systems, University of Texas, Austin, TX, USA:

(External Link)

Generalities from Wikipedia:

http://en.wikipedia.org/wiki/Self- organization)

Lesson 17

  • Fractals

(Introduction from Michael Frame, Benoit Mandelbrot, and Nial Neger, Yale University, New Haven, NE, USA:

http://classes.yale.edu/Fractals/)

  • Sand Piles

(Introduction from Benoît Masson, Laboratoire Informatique Signaux et systèmes of Sofia Antipolis, France, EU:

(External Link) )

  • Spin glasses

(Short introduction&references from Daniel Stariolo, Instituto de Fisica, Universidade Federal do Rio Grande doSul, Porto Alegre, Brazil:

(External Link) )

Additional problems

Suggestions for further reading

Quantum physics made relatively simple

Hans Bethe, Cornell University, Ithaca, NY, USA

Presentation of quantum theory and mechanics through their histories.

(External Link)

3 courses of about 45-50 mn

Video and audio versions

Slides are presented in parallel to the video documents

2.1 “old quantum theory”: 1900 – 1915

2.2 quantum mechanics: 1924 – 1928

2.3 interpretation works on the wave function, the heisenberg uncertainty principle, and the pauli exclusion principle

Suggestions for further reading

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Class. OpenStax CNX. Dec 24, 2010 Download for free at http://cnx.org/content/col11261/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Class' conversation and receive update notifications?

Ask