<< Chapter < Page Chapter >> Page >


Graad 5

Meting en tyd

Module 40


In hierdie leereenheid gaan ons kyk na verskillende eenhede om lengte mee te meet, asook na die belangrikheid daarvan om akkuraat te meet.

Aktiwiteit 1:

Om te meet en op te teken [lu 4.5.3]

Om met toepaslike meetinstrumente presies te meet [lu 4.7.3]

1. Kom ons spring sommer dadelik weg! Hoe goed ken jy jouself? Meet die volgende so akkuraat moontlik – ‘n maat mag jou help:

1.1 die lengte van jou duimnael

1.2 die lengte van jou pinkie

1.3 die lengte van jou regtervoet

1.4 die lengte van jou linkerarm van jou skouer tot by die punt van jou middelvinger

1.5 Hoe lank is jy?

1.6 Hoe hoog kan jy bykom as jy spring van die grond af?

1.7 Hoeveel hoër is dit as jyself?

2. Wat het jy gebruik om bogenoemde te meet?

3. Watter ander meetinstrumente kan ons nog gebruik om lengtes mee te meet?

Onthou jy nog?

1 cm = 10 mm

1 m = 100 cm

1 m = 1 000 mm

1 km = 1 000 m

Het jy geweet?

  • 1 meter is omtrent die afstand van ’n grootmens se neus tot by die punt van sy uitgestrekte hand se middelvinger.
  • 1 cm is ongeveer die lengte van ’n vingernael.
  • 10 cm is ongeveer die lengte van ’n hand.
  • 1 mm is min of meer die breedte van die spasie onder jou vingernael.
  • 10 mm is ongeveer die breedte van ’n pinkie.

4. Werk saam met ’n maat en voltooi die volgende tabel.

Meet Skatting Ware afmeting Verskil
a) die lengte van jou opvoeder
b) die breedte van jul klaskamer
c) die hoogte van jou bank / tafel
d) die totale lengte van die skryfbord in die klas

Aktiwiteit 2:

Om probleme op te los wat die kies van berekening met en herlei van standaard- eenhede insluit [lu 4.6]

1. Dit is belangrik dat ons sal weet watter meeteenhede vir spesifieke lengtes gebruik word. Om dit korrek te kan doen, is dit noodsaaklik dat ons sal weet presies hoe lank die verskillende meeteenhede is. Kom ons kyk hoe vaar jy! Kies ‘n geskikte eenheid om die volgende te meet:

1.1 Die borsmaat van Pa se pak klere is 102 ....................

1.2 Die hoogte van my kamermuur is 4 ....................

1.3 Die breedte van die stoep van die plaashuis is 2,5 ....................

1.4 Die dikte van my woordeboek is 40 ....................

1.5 Die afstand tussen Johannesburg en Kaapstad is meer as 1 000 ....................

1.6 Die diepte van die water in ons swembad is 1,500 ....................

2. Omkring die afmeting wat die naaste aan die werklikheid is:

2.1 Die deur van ons klas is ongeveer . . . . . . . . hoog.

(a) 20 m (b) 200 mm (c) 2 km (d) 2 m

2.2 My voet is omtrent . . . . . . . . lank.

(a) 26 cm (b) 26 mm (c) 26 km (d) 26 m

2.3 Die afstand van Durban na Oos-Londen is . . . . . . . . . . .

(a) 674 mm (b) 674 km (c) 674 m (d) 674 cm

3. Kom ons kyk na die desimale skryfwyse van lengte:

Ons weet reeds 10 mm = 1 cm

Dus: 25 mm = 10 + 10 + 5 mm

= 1cm + 1 cm + 5 mm

= 2 cm + 5 mm

= 2,5 cm of 2 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} cm

Voltooi die tabel:

Aantal mm 10 85 ............ 245 ............ 1 026 ............
Aantal cm 1 ............ 4,2 ............ 17,9 ............ 146,3

4. Ons weet daar is 1 000 mm in 1 m

Dus: 2 347 mm = 2 m 347 mm

= 2,347 m

Voltooi die tabel:

mm m
4 328 4,328
..................... 3
367 .....................
..................... 4,7
28 .....................
..................... 0,067
6 .....................

Questions & Answers

how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Wiskunde graad 5. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10993/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 5' conversation and receive update notifications?