# 5.2 Periodic functions  (Page 4/5)

 Page 4 / 5

In the nutshell, if “T” is the period of f(x), then period of function of the form given below id “T/|b|” :

$af\left(bx+c\right)+d;\phantom{\rule{1em}{0ex}}\mathrm{a,b,c,d}\in Z$

Problem : What is the period of function :

$f\left(x\right)=3+2\mathrm{sin}\left\{\frac{\left(\pi x+2\right)}{3}\right\}$

Solution : Rearranging, we have :

$f\left(x\right)=3+2\mathrm{sin}\left(\frac{\pi }{3}x+\frac{2}{3}\right)$

The period of sine function is “ $2\pi$ ”. Comparing with function form " $af\left(bx+c\right)+d$ ", magnitude of b i.e. |b| is π/3. Hence, period of the given function is :

$⇒T\prime =\frac{T}{|b|}=\frac{2\pi }{\frac{\pi }{3}}=6$

## Modulus of trigonometric functions and periods

The graphs of modulus of a function are helpful to determine periods of modulus of trigonometric functions like |sinx|, |cosx|, |tanx| etc. We know that modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw graph of modulus function by taking mirror image of the corresponding core graph in x-axis. The graphs of |sinx| and |cotx| are shown here :

From the graphs, we observe that periods of |sinx| and |cotx| are π. Similarly, we find that periods of modulus of all six trigonometric functions are π.

## Integral exponentiation of trigonometric function and periods

The periods of trigonometric functions which are raised to integral powers, depend on the nature of exponents. The periods of trigonometric exponentiations are different for even and odd powers. Following results with respect these exponentiated trigonometric functions are useful :

Functions ${\mathrm{sin}}^{n}x,{\mathrm{cos}}^{n}x,{\mathrm{cosec}}^{n}x\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}{\mathrm{sec}}^{n}x$ are periodic on “R” with period “ $\pi$ ” when “n” is even and “ $2\pi$ ” when “n” is fraction or odd. On the other hand, Functions ${\mathrm{tan}}^{n}x\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}{\mathrm{cot}}^{n}x$ are periodic on “R” with period “ $\pi$ ” whether n is odd or even.

Problem : Find period of ${\mathrm{sin}}^{2}x$ .

Solution : Using trigonometric identity,

$⇒{\mathrm{sin}}^{2}x=\frac{1+\mathrm{cos}\mathrm{2x}}{2}$

$⇒{\mathrm{sin}}^{2}x=\frac{1}{2}+\frac{\mathrm{cos}\mathrm{2x}}{2}$

Comparing with $af\left(bx+c\right)+d$ , the magnitude of “b” i.e. |b| is 2. The period of cosine is 2π. Hence, period of ${\mathrm{sin}}^{2}x$ is :

$⇒T=\frac{\mathrm{2\pi }}{2}=\pi$

Problem : Find period of function :

$f\left(x\right)={\mathrm{sin}}^{3}x$

Writing identity for " ${\mathrm{sin}}^{3}x$ ", we have :

$⇒f\left(x\right)={\mathrm{sin}}^{3}x=\frac{3\mathrm{sin}x-\mathrm{sin}3x}{4}=\frac{3}{4}\mathrm{sin}x-\frac{3}{4}\mathrm{sin}3x$

We know that period of “ag(x)” is same as that of “g(x)”. The period of first term of “f(x)”, therefore, is equal to the period of “sinx”. Now, period of “sinx” is “2π”. Hence,

$⇒{T}_{1}=2\pi$

We also know that period of g(ax+b) is equal to the period of g(x), divided by “|a|”. The period of second term of “f(x)”, therefore, is equal to the period of “sinx”, divided by “3”. Now, period of “sinx” is “2π”. Hence,

$⇒{T}_{2}=\frac{2\pi }{3}$

Applying LCM rule,

$⇒T=\frac{\text{LCM of}\phantom{\rule{1em}{0ex}}2\pi \phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}2\pi }{\text{HCF of}\phantom{\rule{1em}{0ex}}1\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}3}=\frac{\mathrm{2\pi }}{1}=\pi$

## Lcm rule for periodicity

When two periodic functions are added or subtracted, the resulting function is also a periodic function. The resulting function is periodic when two individual periodic functions being added or subtracted repeat simultaneously. Consider a function,

$\mathrm{f\left(x\right)}=\mathrm{sinx}+\mathrm{sin}\frac{x}{2}$

The period of sinx is 2π, whereas period of sinx/2 is 4π. The function f(x), therefore, repeats after 4π, which is equal to LCM of (least common multiplier) of the two periods. It is evident from the graph also.

what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
how to synthesize TiO2 nanoparticles by chemical methods
Zubear
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
What is power set
Period of sin^6 3x+ cos^6 3x
Period of sin^6 3x+ cos^6 3x