<< Chapter < Page Chapter >> Page >
A diagram is shown that includes four structural formulas for acids. A red, right pointing arrow is placed beneath the structures which is labeled “Increasing acid strength.” At the top left, the structure of Nitrous acid is provided. It includes an H atom to which an O atom with two unshared electron pairs is connected with a single bond to the right. A single bond extends to the right and slightly below to a N atom with one unshared electron pair. A double bond extends up and to the right from this N atom to an O atom which has two unshared electron pairs. To the upper right is a structure for Nitric acid. This structure differs from the previous structure in that the N atom is directly to the right of the first O atom and a second O atom with three unshared electron pairs is connected with a single bond below and to the right of the N atom which has no unshared electron pairs. At the lower left, an O atom with two unshared electron pairs is double bonded to its right to an S atom with a single unshared electron pair. An O atom with two unshared electron pairs is bonded above and an H atom is single bonded to this O atom. To the right of the S atom is a single bond to another O atom with two unshared electron pairs to which an H atom is single bonded. This structure is labeled “Sulfurous acid.” A similar structure which is labeled “Sulfuric acid” is placed in the lower right region of the figure. This structure differs in that an H atom is single bonded to the left of the first O atom, leaving it with two unshared electron pairs and a fourth O atom with two unshared electron pairs is double bonded beneath the S atom, leaving it with no unshared electron pairs.
As the oxidation number of the central atom E increases, the acidity also increases.

Hydroxy compounds of elements with intermediate electronegativities and relatively high oxidation numbers (for example, elements near the diagonal line separating the metals from the nonmetals in the periodic table) are usually amphoteric. This means that the hydroxy compounds act as acids when they react with strong bases and as bases when they react with strong acids. The amphoterism of aluminum hydroxide, which commonly exists as the hydrate Al(H 2 O) 3 (OH) 3 , is reflected in its solubility in both strong acids and strong bases. In strong bases, the relatively insoluble hydrated aluminum hydroxide, Al(H 2 O) 3 (OH) 3 , is converted into the soluble ion, [ Al ( H 2 O ) 2 ( OH ) 4 ] , by reaction with hydroxide ion:

Al ( H 2 O ) 3 ( OH ) 3 ( a q ) + OH ( a q ) H 2 O ( l ) + [ Al ( H 2 O ) 2 ( OH ) 4 ] ( a q )

In this reaction, a proton is transferred from one of the aluminum-bound H 2 O molecules to a hydroxide ion in solution. The Al(H 2 O) 3 (OH) 3 compound thus acts as an acid under these conditions. On the other hand, when dissolved in strong acids, it is converted to the soluble ion [ Al ( H 2 O ) 6 ] 3+ by reaction with hydronium ion:

3H 3 O + ( a q ) + Al ( H 2 O ) 3 ( OH ) 3 ( a q ) Al ( H 2 O ) 6 3+ ( a q ) + 3H 2 O ( l )

In this case, protons are transferred from hydronium ions in solution to Al(H 2 O) 3 (OH) 3 , and the compound functions as a base.

Key concepts and summary

The strengths of Brønsted-Lowry acids and bases in aqueous solutions can be determined by their acid or base ionization constants. Stronger acids form weaker conjugate bases, and weaker acids form stronger conjugate bases. Thus strong acids are completely ionized in aqueous solution because their conjugate bases are weaker bases than water. Weak acids are only partially ionized because their conjugate bases are strong enough to compete successfully with water for possession of protons. Strong bases react with water to quantitatively form hydroxide ions. Weak bases give only small amounts of hydroxide ion. The strengths of the binary acids increase from left to right across a period of the periodic table (CH 4 <NH 3 <H 2 O<HF), and they increase down a group (HF<HCl<HBr<HI). The strengths of oxyacids that contain the same central element increase as the oxidation number of the element increases (H 2 SO 3 <H 2 SO 4 ). The strengths of oxyacids also increase as the electronegativity of the central element increases [H 2 SeO 4 <H 2 SO 4 ].

Key equations

  • K a = [ H 3 O + ] [ A ] [ HA ]
  • K b = [ HB + ] [ OH ] [ B ]
  • K a × K b = 1.0 × 10 −14 = K w
  • Percent ionization = [ H 3 O + ] eq [ HA] 0 × 100

Chemistry end of chapter exercises

Explain why the neutralization reaction of a strong acid and a weak base gives a weakly acidic solution.

Got questions? Get instant answers now!

Explain why the neutralization reaction of a weak acid and a strong base gives a weakly basic solution.

The salt ionizes in solution, but the anion slightly reacts with water to form the weak acid. This reaction also forms OH , which causes the solution to be basic.

Got questions? Get instant answers now!

Use this list of important industrial compounds (and [link] ) to answer the following questions regarding: CaO, Ca(OH) 2 , CH 3 CO 2 H, CO 2, HCl, H 2 CO 3 , HF, HNO 2 , HNO 3 , H 3 PO 4 , H 2 SO 4 , NH 3 , NaOH, Na 2 CO 3 .

(a) Identify the strong Brønsted-Lowry acids and strong Brønsted-Lowry bases.

(b) List those compounds in (a) that can behave as Brønsted-Lowry acids with strengths lying between those of H 3 O + and H 2 O.

(c) List those compounds in (a) that can behave as Brønsted-Lowry bases with strengths lying between those of H 2 O and OH .

Got questions? Get instant answers now!

Questions & Answers

what is a balanced equation 4 trioxonitrate (V)acid and sodium hydroxide?
Marcel Reply
proved ur Worth: If A is a of trioxonitrate(V)acid,HNO3' of unknown concentration .B is a standard solution of sodium hydroxide containing 4.00g per dm cube of solution.25cm cube portions solution B required an average of 24.00cm cube of solution A for neutralization,using 2 drops of methyl orange.
Marcel
calculate the concentration of solution B in moles per dm cube
Marcel
calculate the concentration of solution A and B in moles per DM cube
Marcel
finally calculate the concentration in g/dm cube of HNO3 in solution A (H=1,N=14,O=16,Na=23)
Marcel
calculate the standard enthalpy of formation for propane(C3H8) from the following data; 1), C3H8+5O2->3CO2+4H2O; -222.0kJ/mol 2), C+O2->CO2;-395.5kJ/mol 3),H2+O->H2O; 285.8kJ/mol
Josephine
let eventually of formation of propane = X X + (-222)=3×(-395.5)+4×(-286) rearrange to find X
Paul
wat is electrolysis?
Mgbachi Reply
it is the chemical decomposition of a substance when electric current is passed through it either in molten form or aqueous solution
Nuru
list the side effect of chemical industries
Chelsea Reply
how do you ionise an atom
Rabeka Reply
many ways ,but one of them is when the atom becomes heated to a certain temperature the surface electron becomes too energetic and leaves the atom because the attraction between the nucleus and the electron becomes overpowered by the energetic eletron
sunday
also hitting of two atoms can cause transfer of surface electrons
sunday
and when this transfers occur the atom becomes ionised
sunday
who is doing Cape chemistry tomorrow?
caramel Reply
What is hybridization
edmondnti Reply
the mix between different breeds of species in one
Jared
it is the blending of orbitals.
stanley
the mixing of orbital
caramel
are covalent bonds influenced by factors such as temperature and pressure?
patrick Reply
what is catalyst used for mirror test
Sanjay Reply
when an atom looses electron, what does it become?
Abdullahi Reply
it's oxidized and called an ion
Anora
thanks
Abdullahi
Now, I get it
Abdullahi
cation
Anora
can you give an example please, if you don't mind
Abdullahi
a positive ion,become positively charged/a cation.
Janis
sodium plus one is simple cation is exmpl
ajmal
Taking Sodium as example..... it carries a positive charge which means it is positively charged.....when it gains an electron, it is reduced cuz an electron is negatively charged.....also when an atom looses an electron, it becomes positively charged and when it gains, it becomes negatively charged.
Nuru
typically, ionization is the process where an atom looses or gains electron(s) to form ion(s) either a positively or negatively
Nuru
what is copper
Bryan Reply
just an element
Power
Cu
daniel
Why is water a single covalent bond?
Mohamed Reply
nitrogen is a gas whereas phosphorus is solid .Explain.
Jacky Reply
can you explain what you are needing it now better than maybe I'm just not interpreting it what you're needing to know
Alex
cool nitrogen down to around negative 270 °F and it will be solid. now they are both solid
daniel
they are different elements and dats how they are pal.....check the periodic table
Nuru
Nitrogen is a diatomic molecule with relatively weak van de waals forces between the molecules. These forces are overcome when the solid melts or liquid evaporates. Phosphorus forms larger molecules consisting of four phosphorus atoms in a tetradedral shape. The intermolecular forces are stronger
Paul
whats a base
Daksalma Reply
A base is a substance which will neutralize an acid to yield salt and water only
Zainab
base is a substance that produces OH(aq) ions in aqueous solution. Strong soluable bases are in water and are completely dislocated. Therefore weak base ionize slightly...
Roy
a base is a substance that neutralise and acid to form salt and water
Daksalma
write electrolysis of bright solution using either carbon or platinum and write the reaction at the anode or at the cathode
Abdullah Reply
what is the H3O of a solution with the pH of 2.5
Sgt.Elliott_98 Reply
pH<7, therefore there are only H3O+HX3OX+particles in the solution. [H3O+]=10−pH=10−6.99=1.02⋅10−7[HX3OX+]=10−pH=10−6.99=1.02⋅10−7 When the pH is smaller than 6 or greater than 8, one will not notice the difference, but here it is logarithmically speaking  and I'll give you another one if this is ki
Alex
if I'm answering and interpreting what you're asking correctly
Alex
When the pH is smaller than 6 or greater than 8, one will not notice the difference, but here it is logarithmically speaking 
Alex
sorry I don't know why that sent again
Alex
We have [H3O+]=10−pH=10−6.99=1.02⋅10−7[HX3OX+]=10−pH=10−6.99=1.02⋅10−7 and [OH−]=10−pOH=10−7.01=9.77⋅10−8[OHX−]=10−pOH=10−7.01=9.77⋅10−8.  Because of H3O++OH−⟶2H2OHX3OX++OHX−⟶2HX2O we are left with [H3O+]=1.02⋅10−7−9.77⋅10−8=4.6⋅10−9
Alex
Practice Key Terms 5

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask