# 9.1 Solving trigonometric equations with identities  (Page 5/9)

 Page 5 / 9

## Simplify by rewriting and using substitution

Simplify the expression by rewriting and using identities:

${\mathrm{csc}}^{2}\theta -{\mathrm{cot}}^{2}\theta$

$1+{\mathrm{cot}}^{2}\theta ={\mathrm{csc}}^{2}\theta$

Now we can simplify by substituting $\text{\hspace{0.17em}}1+{\mathrm{cot}}^{2}\theta \text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}{\mathrm{csc}}^{2}\theta .\text{\hspace{0.17em}}$ We have

$\begin{array}{ccc}\hfill {\mathrm{csc}}^{2}\theta -{\mathrm{cot}}^{2}\theta & =& 1+{\mathrm{cot}}^{2}\theta -{\mathrm{cot}}^{2}\theta \hfill \\ & =& 1\hfill \end{array}$

Use algebraic techniques to verify the identity: $\text{\hspace{0.17em}}\frac{\mathrm{cos}\text{\hspace{0.17em}}\theta }{1+\mathrm{sin}\text{\hspace{0.17em}}\theta }=\frac{1-\mathrm{sin}\text{\hspace{0.17em}}\theta }{\mathrm{cos}\text{\hspace{0.17em}}\theta }.$

(Hint: Multiply the numerator and denominator on the left side by $\text{\hspace{0.17em}}1-\mathrm{sin}\text{\hspace{0.17em}}\theta .\right)$

$\begin{array}{ccc}\hfill \frac{\mathrm{cos}\text{\hspace{0.17em}}\theta }{1+\mathrm{sin}\text{\hspace{0.17em}}\theta }\left(\frac{1-\mathrm{sin}\text{\hspace{0.17em}}\theta }{1-\mathrm{sin}\text{\hspace{0.17em}}\theta }\right)& =& \frac{\mathrm{cos}\text{\hspace{0.17em}}\theta \left(1-\mathrm{sin}\text{\hspace{0.17em}}\theta \right)}{1-{\mathrm{sin}}^{2}\theta }\hfill \\ & =& \frac{\mathrm{cos}\text{\hspace{0.17em}}\theta \left(1-\mathrm{sin}\text{\hspace{0.17em}}\theta \right)}{{\mathrm{cos}}^{2}\theta }\hfill \\ & =& \frac{1-\mathrm{sin}\text{\hspace{0.17em}}\theta }{\mathrm{cos}\text{\hspace{0.17em}}\theta }\hfill \end{array}$

Access these online resources for additional instruction and practice with the fundamental trigonometric identities.

## Key equations

 Pythagorean identities $\begin{array}{l}{\mathrm{cos}}^{2}\theta +{\mathrm{sin}}^{2}\theta =1\\ 1+{\mathrm{cot}}^{2}\theta ={\mathrm{csc}}^{2}\theta \\ 1+{\mathrm{tan}}^{2}\theta ={\mathrm{sec}}^{2}\theta \end{array}$ Even-odd identities $\begin{array}{ccc}\mathrm{tan}\left(-\theta \right)& =& -\mathrm{tan}\text{\hspace{0.17em}}\theta \\ \mathrm{cot}\left(-\theta \right)& =& -\mathrm{cot}\text{\hspace{0.17em}}\theta \\ \mathrm{sin}\left(-\theta \right)& =& -\mathrm{sin}\text{\hspace{0.17em}}\theta \\ \mathrm{csc}\left(-\theta \right)& =& -\mathrm{csc}\text{\hspace{0.17em}}\theta \\ \mathrm{cos}\left(-\theta \right)& =& \mathrm{cos}\text{\hspace{0.17em}}\theta \\ \mathrm{sec}\left(-\theta \right)& =& \mathrm{sec}\text{\hspace{0.17em}}\theta \end{array}$ Reciprocal identities $\begin{array}{ccc}\mathrm{sin}\text{\hspace{0.17em}}\theta & =& \frac{1}{\mathrm{csc}\text{\hspace{0.17em}}\theta }\\ \mathrm{cos}\text{\hspace{0.17em}}\theta & =& \frac{1}{\mathrm{sec}\text{\hspace{0.17em}}\theta }\\ \mathrm{tan}\text{\hspace{0.17em}}\theta & =& \frac{1}{\mathrm{cot}\text{\hspace{0.17em}}\theta }\\ \mathrm{csc}\text{\hspace{0.17em}}\theta & =& \frac{1}{\mathrm{sin}\text{\hspace{0.17em}}\theta }\\ \mathrm{sec}\text{\hspace{0.17em}}\theta & =& \frac{1}{\mathrm{cos}\text{\hspace{0.17em}}\theta }\\ \mathrm{cot}\text{\hspace{0.17em}}\theta & =& \frac{1}{\mathrm{tan}\text{\hspace{0.17em}}\theta }\end{array}$ Quotient identities $\begin{array}{ccc}\mathrm{tan}\text{\hspace{0.17em}}\theta & =& \frac{\mathrm{sin}\text{\hspace{0.17em}}\theta }{\mathrm{cos}\text{\hspace{0.17em}}\theta }\\ \mathrm{cot}\text{\hspace{0.17em}}\theta & =& \frac{\mathrm{cos}\text{\hspace{0.17em}}\theta }{\mathrm{sin}\text{\hspace{0.17em}}\theta }\end{array}$

## Key concepts

• There are multiple ways to represent a trigonometric expression. Verifying the identities illustrates how expressions can be rewritten to simplify a problem.
• Graphing both sides of an identity will verify it. See [link] .
• Simplifying one side of the equation to equal the other side is another method for verifying an identity. See [link] and [link] .
• The approach to verifying an identity depends on the nature of the identity. It is often useful to begin on the more complex side of the equation. See [link] .
• We can create an identity and then verify it. See [link] .
• Verifying an identity may involve algebra with the fundamental identities. See [link] and [link] .
• Algebraic techniques can be used to simplify trigonometric expressions. We use algebraic techniques throughout this text, as they consist of the fundamental rules of mathematics. See [link] , [link] , and [link] .

## Verbal

We know $\text{\hspace{0.17em}}g\left(x\right)=\mathrm{cos}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is an even function, and $\text{\hspace{0.17em}}f\left(x\right)=\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}h\left(x\right)=\mathrm{tan}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ are odd functions. What about $\text{\hspace{0.17em}}G\left(x\right)={\mathrm{cos}}^{2}x,F\left(x\right)={\mathrm{sin}}^{2}x,$ and $\text{\hspace{0.17em}}H\left(x\right)={\mathrm{tan}}^{2}x?\text{\hspace{0.17em}}$ Are they even, odd, or neither? Why?

All three functions, $\text{\hspace{0.17em}}F,G,$ and $H,$ are even.

This is because $\text{\hspace{0.17em}}F\left(-x\right)=\mathrm{sin}\left(-x\right)\mathrm{sin}\left(-x\right)=\left(-\mathrm{sin}\text{\hspace{0.17em}}x\right)\left(-\mathrm{sin}\text{\hspace{0.17em}}x\right)={\mathrm{sin}}^{2}x=F\left(x\right),G\left(-x\right)=\mathrm{cos}\left(-x\right)\mathrm{cos}\left(-x\right)=\mathrm{cos}\text{\hspace{0.17em}}x\mathrm{cos}\text{\hspace{0.17em}}x={\mathrm{cos}}^{2}x=G\left(x\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}H\left(-x\right)=\mathrm{tan}\left(-x\right)\mathrm{tan}\left(-x\right)=\left(-\mathrm{tan}\text{\hspace{0.17em}}x\right)\left(-\mathrm{tan}\text{\hspace{0.17em}}x\right)={\mathrm{tan}}^{2}x=H\left(x\right).$

Examine the graph of $\text{\hspace{0.17em}}f\left(x\right)=\mathrm{sec}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ on the interval $\text{\hspace{0.17em}}\left[-\pi ,\pi \right].\text{\hspace{0.17em}}$ How can we tell whether the function is even or odd by only observing the graph of $\text{\hspace{0.17em}}f\left(x\right)=\mathrm{sec}\text{\hspace{0.17em}}x?$

After examining the reciprocal identity for $\text{\hspace{0.17em}}\mathrm{sec}\text{\hspace{0.17em}}t,$ explain why the function is undefined at certain points.

When $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}t=0,$ then $\text{\hspace{0.17em}}\mathrm{sec}\text{\hspace{0.17em}}t=\frac{1}{0},$ which is undefined.

All of the Pythagorean identities are related. Describe how to manipulate the equations to get from $\text{\hspace{0.17em}}{\mathrm{sin}}^{2}t+{\mathrm{cos}}^{2}t=1\text{\hspace{0.17em}}$ to the other forms.

## Algebraic

For the following exercises, use the fundamental identities to fully simplify the expression.

$\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{sec}\text{\hspace{0.17em}}x$

$\mathrm{sin}\text{\hspace{0.17em}}x$

$\mathrm{sin}\left(-x\right)\text{\hspace{0.17em}}\mathrm{cos}\left(-x\right)\text{\hspace{0.17em}}\mathrm{csc}\left(-x\right)$

$\mathrm{tan}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x+\mathrm{sec}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}{\mathrm{cos}}^{2}x$

$\mathrm{sec}\text{\hspace{0.17em}}x$

$\mathrm{csc}\text{\hspace{0.17em}}x+\mathrm{cos}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cot}\left(-x\right)$

$\frac{\mathrm{cot}\text{\hspace{0.17em}}t+\mathrm{tan}\text{\hspace{0.17em}}t}{\mathrm{sec}\left(-t\right)}$

$\mathrm{csc}\text{\hspace{0.17em}}t$

$3\text{\hspace{0.17em}}{\mathrm{sin}}^{3}\text{\hspace{0.17em}}t\text{\hspace{0.17em}}\mathrm{csc}\text{\hspace{0.17em}}t+{\mathrm{cos}}^{2}\text{\hspace{0.17em}}t+2\text{\hspace{0.17em}}\mathrm{cos}\left(-t\right)\mathrm{cos}\text{\hspace{0.17em}}t$

$-\mathrm{tan}\left(-x\right)\mathrm{cot}\left(-x\right)$

$-1$

$\frac{-\mathrm{sin}\left(-x\right)\mathrm{cos}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{sec}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{csc}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}x}{\mathrm{cot}\text{\hspace{0.17em}}x}$

$\frac{1+{\mathrm{tan}}^{2}\theta }{{\mathrm{csc}}^{2}\theta }+{\mathrm{sin}}^{2}\theta +\frac{1}{{\mathrm{sec}}^{2}\theta }$

${\mathrm{sec}}^{2}x$

$\left(\frac{\mathrm{tan}\text{\hspace{0.17em}}x}{{\mathrm{csc}}^{2}x}+\frac{\mathrm{tan}\text{\hspace{0.17em}}x}{{\mathrm{sec}}^{2}x}\right)\left(\frac{1+\mathrm{tan}\text{\hspace{0.17em}}x}{1+\mathrm{cot}\text{\hspace{0.17em}}x}\right)-\frac{1}{{\mathrm{cos}}^{2}x}$

$\frac{1-{\mathrm{cos}}^{2}\text{\hspace{0.17em}}x}{{\mathrm{tan}}^{2}\text{\hspace{0.17em}}x}+2\text{\hspace{0.17em}}{\mathrm{sin}}^{2}\text{\hspace{0.17em}}x$

${\mathrm{sin}}^{2}x+1$

For the following exercises, simplify the first trigonometric expression by writing the simplified form in terms of the second expression.

$\frac{\mathrm{tan}\text{\hspace{0.17em}}x+\mathrm{cot}\text{\hspace{0.17em}}x}{\mathrm{csc}\text{\hspace{0.17em}}x};\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}x$

$\frac{\mathrm{sec}\text{\hspace{0.17em}}x+\mathrm{csc}\text{\hspace{0.17em}}x}{1+\mathrm{tan}\text{\hspace{0.17em}}x};\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x$

$\frac{1}{\mathrm{sin}\text{\hspace{0.17em}}x}$

$\frac{\mathrm{cos}\text{\hspace{0.17em}}x}{1+\mathrm{sin}\text{\hspace{0.17em}}x}+\mathrm{tan}\text{\hspace{0.17em}}x;\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}x$

$\frac{1}{\mathrm{sin}\text{\hspace{0.17em}}x\mathrm{cos}\text{\hspace{0.17em}}x}-\mathrm{cot}\text{\hspace{0.17em}}x;\text{\hspace{0.17em}}\mathrm{cot}\text{\hspace{0.17em}}x$

$\frac{1}{\mathrm{cot}\text{\hspace{0.17em}}x}$

$\frac{1}{1-\mathrm{cos}\text{\hspace{0.17em}}x}-\frac{\mathrm{cos}\text{\hspace{0.17em}}x}{1+\mathrm{cos}\text{\hspace{0.17em}}x};\text{\hspace{0.17em}}\mathrm{csc}\text{\hspace{0.17em}}x$

$\left(\mathrm{sec}\text{\hspace{0.17em}}x+\mathrm{csc}\text{\hspace{0.17em}}x\right)\left(\mathrm{sin}\text{\hspace{0.17em}}x+\mathrm{cos}\text{\hspace{0.17em}}x\right)-2-\mathrm{cot}\text{\hspace{0.17em}}x;\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}x$

$\mathrm{tan}\text{\hspace{0.17em}}x$

$-4\mathrm{sec}\text{\hspace{0.17em}}x\mathrm{tan}\text{\hspace{0.17em}}x$

$\mathrm{tan}\text{\hspace{0.17em}}x;\text{\hspace{0.17em}}\mathrm{sec}\text{\hspace{0.17em}}x$

$\mathrm{sec}\text{\hspace{0.17em}}x;\text{\hspace{0.17em}}\mathrm{cot}\text{\hspace{0.17em}}x$

$±\sqrt{\frac{1}{{\mathrm{cot}}^{2}x}+1}$

$\mathrm{sec}\text{\hspace{0.17em}}x;\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x$

$\mathrm{cot}\text{\hspace{0.17em}}x;\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x$

$\frac{±\sqrt{1-{\mathrm{sin}}^{2}x}}{\mathrm{sin}\text{\hspace{0.17em}}x}$

$\mathrm{cot}\text{\hspace{0.17em}}x;\text{\hspace{0.17em}}\mathrm{csc}\text{\hspace{0.17em}}x$

For the following exercises, verify the identity.

$\mathrm{cos}\text{\hspace{0.17em}}x-{\mathrm{cos}}^{3}x=\mathrm{cos}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}{\mathrm{sin}}^{2}\text{\hspace{0.17em}}x$

$\begin{array}{ccc}\hfill \mathrm{cos}\text{\hspace{0.17em}}x-{\mathrm{cos}}^{3}x& =& \mathrm{cos}\text{\hspace{0.17em}}x\left(1-{\mathrm{cos}}^{2}x\right)\hfill \\ & =& \mathrm{cos}\text{\hspace{0.17em}}x{\mathrm{sin}}^{2}x\hfill \end{array}$

$\mathrm{cos}\text{\hspace{0.17em}}x\left(\mathrm{tan}\text{\hspace{0.17em}}x-\mathrm{sec}\left(-x\right)\right)=\mathrm{sin}\text{\hspace{0.17em}}x-1$

$\frac{1+{\mathrm{sin}}^{2}x}{{\mathrm{cos}}^{2}x}=\frac{1}{{\mathrm{cos}}^{2}x}+\frac{{\mathrm{sin}}^{2}x}{{\mathrm{cos}}^{2}x}=1+2\text{\hspace{0.17em}}{\mathrm{tan}}^{2}x$

$\frac{1+{\mathrm{sin}}^{2}x}{{\mathrm{cos}}^{2}x}=\frac{1}{{\mathrm{cos}}^{2}x}+\frac{{\mathrm{sin}}^{2}x}{{\mathrm{cos}}^{2}x}={\mathrm{sec}}^{2}x+{\mathrm{tan}}^{2}x={\mathrm{tan}}^{2}x+1+{\mathrm{tan}}^{2}x=1+2{\mathrm{tan}}^{2}x$

${\left(\mathrm{sin}\text{\hspace{0.17em}}x+\mathrm{cos}\text{\hspace{0.17em}}x\right)}^{2}=1+2\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x\mathrm{cos}\text{\hspace{0.17em}}x$

${\mathrm{cos}}^{2}x-{\mathrm{tan}}^{2}x=2-{\mathrm{sin}}^{2}x-{\mathrm{sec}}^{2}x$

${\mathrm{cos}}^{2}x-{\mathrm{tan}}^{2}x=1-{\mathrm{sin}}^{2}x-\left({\mathrm{sec}}^{2}x-1\right)=1-{\mathrm{sin}}^{2}x-{\mathrm{sec}}^{2}x+1=2-{\mathrm{sin}}^{2}x-{\mathrm{sec}}^{2}x$

## Extensions

For the following exercises, prove or disprove the identity.

$\frac{1}{1+\mathrm{cos}\text{\hspace{0.17em}}x}-\frac{1}{1-\mathrm{cos}\left(-x\right)}=-2\text{\hspace{0.17em}}\mathrm{cot}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{csc}\text{\hspace{0.17em}}x$

${\mathrm{csc}}^{2}x\left(1+{\mathrm{sin}}^{2}x\right)={\mathrm{cot}}^{2}x$

False

$\left(\frac{{\mathrm{sec}}^{2}\left(-x\right)-{\mathrm{tan}}^{2}x}{\mathrm{tan}\text{\hspace{0.17em}}x}\right)\left(\frac{2+2\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}x}{2+2\text{\hspace{0.17em}}\mathrm{cot}\text{\hspace{0.17em}}x}\right)-2\text{\hspace{0.17em}}{\mathrm{sin}}^{2}x=\mathrm{cos}\text{\hspace{0.17em}}2x$

$\frac{\mathrm{tan}\text{\hspace{0.17em}}x}{\mathrm{sec}\text{\hspace{0.17em}}x}\mathrm{sin}\left(-x\right)={\mathrm{cos}}^{2}x$

False

$\frac{\mathrm{sec}\left(-x\right)}{\mathrm{tan}\text{\hspace{0.17em}}x+\mathrm{cot}\text{\hspace{0.17em}}x}=-\mathrm{sin}\left(-x\right)$

$\frac{1+\mathrm{sin}\text{\hspace{0.17em}}x}{\mathrm{cos}\text{\hspace{0.17em}}x}=\frac{\mathrm{cos}\text{\hspace{0.17em}}x}{1+\mathrm{sin}\left(-x\right)}$

Proved with negative and Pythagorean identities

For the following exercises, determine whether the identity is true or false. If false, find an appropriate equivalent expression.

$\frac{{\mathrm{cos}}^{2}\theta -{\mathrm{sin}}^{2}\theta }{1-{\mathrm{tan}}^{2}\theta }={\mathrm{sin}}^{2}\theta$

$3\text{\hspace{0.17em}}{\mathrm{sin}}^{2}\theta +4\text{\hspace{0.17em}}{\mathrm{cos}}^{2}\theta =3+{\mathrm{cos}}^{2}\theta$

True $\text{\hspace{0.17em}}3\text{\hspace{0.17em}}{\mathrm{sin}}^{2}\theta +4\text{\hspace{0.17em}}{\mathrm{cos}}^{2}\theta =3\text{\hspace{0.17em}}{\mathrm{sin}}^{2}\theta +3\text{\hspace{0.17em}}{\mathrm{cos}}^{2}\theta +{\mathrm{cos}}^{2}\theta =3\left({\mathrm{sin}}^{2}\theta +{\mathrm{cos}}^{2}\theta \right)+{\mathrm{cos}}^{2}\theta =3+{\mathrm{cos}}^{2}\theta$

$\frac{\mathrm{sec}\text{\hspace{0.17em}}\theta +\mathrm{tan}\text{\hspace{0.17em}}\theta }{\mathrm{cot}\text{\hspace{0.17em}}\theta +\mathrm{cos}\text{\hspace{0.17em}}\theta }={\mathrm{sec}}^{2}\theta$

what is linear equation with one unknown 2x+5=3
-4
Joel
x=-4
Joel
x=-1
Joan
I was wrong. I didn't move all constants to the right of the equation.
Joel
x=-1
Cristian
what is the VA Ha D R X int Y int of f(x) =x²+4x+4/x+2 f(x) =x³-1/x-1
can I get help with this?
Wayne
Are they two separate problems or are the two functions a system?
Wilson
Also, is the first x squared in "x+4x+4"
Wilson
x^2+4x+4?
Wilson
thank you
Wilson
Wilson
f(x)=x square-root 2 +2x+1 how to solve this value
Wilson
what is algebra
The product of two is 32. Find a function that represents the sum of their squares.
Paul
if theta =30degree so COS2 theta = 1- 10 square theta upon 1 + tan squared theta
how to compute this 1. g(1-x) 2. f(x-2) 3. g (-x-/5) 4. f (x)- g (x)
hi
John
hi
Grace
what sup friend
John
not much For functions, there are two conditions for a function to be the inverse function:   1--- g(f(x)) = x for all x in the domain of f     2---f(g(x)) = x for all x in the domain of g Notice in both cases you will get back to the  element that you started with, namely, x.
Grace
sin theta=3/4.prove that sec square theta barabar 1 + tan square theta by cosec square theta minus cos square theta
acha se dhek ke bata sin theta ke value
Ajay
sin theta ke ja gha sin square theta hoga
Ajay
I want to know trigonometry but I can't understand it anyone who can help
Yh
Idowu
which part of trig?
Nyemba
functions
Siyabonga
trigonometry
Ganapathi
differentiation doubhts
Ganapathi
hi
Ganapathi
hello
Brittany
Prove that 4sin50-3tan 50=1
False statement so you cannot prove it
Wilson
f(x)= 1 x    f(x)=1x  is shifted down 4 units and to the right 3 units.
f (x) = −3x + 5 and g (x) = x − 5 /−3
Sebit
what are real numbers
I want to know partial fraction Decomposition.
classes of function in mathematics
divide y2_8y2+5y2/y2
wish i knew calculus to understand what's going on 🙂
@dashawn ... in simple terms, a derivative is the tangent line of the function. which gives the rate of change at that instant. to calculate. given f(x)==ax^n. then f'(x)=n*ax^n-1 . hope that help.
Christopher
thanks bro
Dashawn
maybe when i start calculus in a few months i won't be that lost 😎
Dashawn