<< Chapter < Page Chapter >> Page >
A module concerning the size of a signal, more specifically norms.

Introduction

The "size" of a signal would involve some notion of its strength. We use the mathematical concept of the norm to quantify this concept for both continuous-time and discrete-time signals. As there are several types of norms that can be defined for signals, there are several different conceptions of signal size.

Signal energy

Infinite length, continuous time signals

The most commonly encountered notion of the energy of a signal defined on R is the L 2 norm defined by the square root of the integral of the square of the signal, for which the notation

| | f | | 2 = - | f ( t ) | 2 d t 1 / 2 .

However, this idea can be generalized through definition of the L p norm, which is given by

| | f | | p = - | f ( t ) | p d t 1 / p

for all 1 p < . Because of the behavior of this expression as p approaches , we furthermore define

| | f | | = sup t R | f ( t ) | ,

which is the least upper bound of | f ( t ) | . A signal f is said to belong to the vector space L p ( R ) if | | f | | p < .

For example, consider the function defined by

f ( t ) = 1 / t 1 t 0 otherwise .

The L 1 norm is

| | f | | 1 = - | f ( t ) | d t = - 1 t d t = .

The L 2 norm is

| | f | | 2 = - | f ( t ) | 2 d t 1 / 2 = - 1 t 2 d t 1 / 2 = 1 .

The L norm is

| | f | | = sup t R | f ( t ) | = sup t R [ 1 , ) 1 t = 1 .
Got questions? Get instant answers now!

Finite length, continuous time signals

The most commonly encountered notion of the energy of a signal defined on R [ a , b ] is the L 2 norm defined by the square root of the integral of the square of the signal, for which the notation

| | f | | 2 = a b | f ( t ) | 2 d t 1 / 2 .

However, this idea can be generalized through definition of the L p norm, which is given by

| | f | | p = a b | f ( t ) | p d t 1 / p

for all 1 p < . Because of the behavior of this expression as p approaches , we furthermore define

| | f | | = sup t R [ a , b ] | f ( t ) | ,

which is the least upper bound of | f ( t ) | . A signal f is said to belong to the vector space L p ( R [ a , b ] ) if | | f | | p < . The periodic extension of such a signal would have infinite energy but finite power.

For example, consider the function defined on R [ - 5 , 3 ] by

f ( t ) = t - 5 < t < 3 0 otherwise .

The L 1 norm is

| | f | | 1 = - 5 3 | f ( t ) | d t = - 5 3 | t | d t = 17 .

The L 2 norm is

| | f | | 2 = - 5 3 | f ( t ) | 2 d t 1 / 2 = - 5 3 | t | 2 d t 1 / 2 7 . 12

The L norm is

| | f | | = sup t R [ - 5 , 3 ] | t | = 5 .
Got questions? Get instant answers now!

Infinite length, discrete time signals

The most commonly encountered notion of the energy of a signal defined on Z is the l 2 norm defined by the square root of the sumation of the square of the signal, for which the notation

| | x n | | 2 = n = - | x n | 2 1 / 2 .

However, this idea can be generalized through definition of the l p norm, which is given by

| | x n | | p = n = - | x n | p 1 / p .

for all 1 p < . Because of the behavior of this expression as p approaches , we furthermore define

| | x n | | = sup n Z | x n | ,

which is the least upper bound of | x n | . A signal x is said to belong to the vector space l p ( Z ) if | | x n | | p < .

For example, consider the function defined by

x n = 1 / n 1 n 0 otherwise .

The l 1 norm is

| | x n | | 1 = n = - | x n | = n = 1 1 n = .

The l 2 norm is

| | x n | | 2 = n = - | x n | 2 1 / 2 = n = 1 1 n 2 1 / 2 = π 6 6

The l norm is

| | x n | | = sup n Z | x n | = sup n Z [ 1 , ) 1 n = 1 .
Got questions? Get instant answers now!

Finite length, discrete time signals

The most commonly encountered notion of the energy of a signal defined on Z [ a , b ] is the l 2 norm defined by the square root of the sumation of the square of the signal, for which the notation

| | x n | | 2 = n = a b | x n | 2 1 / 2 .

However, this idea can be generalized through definition of the l p norm, which is given by

| | x n | | p = n = a b | x n | p 1 / p

for all 1 p < . Because of the behavior of this expression as p approaches , we furthermore define

| | x n | | = sup n Z [ a , b ] | x n | ,

which is the least upper bound of | x n | . In this case, this least upper bound is simply the maximum value of | x n | . A signal x n is said to belong to the vector space l p ( Z [ a , b ] ) if | | x n | | p < . The periodic extension of such a signal would have infinite energy but finite power.

For example, consider the function defined on Z [ - 5 , 3 ] by

x n = n - 5 < n < 3 0 otherwise .

The l 1 norm is

| | x n | | 1 = n = - 5 3 | x n | = - 5 3 | n | = 21 .

The l 2 norm is

| | x n | | 2 = - 5 3 | x n | 2 1 / 2 = - 5 3 | n | 2 d t 1 / 2 8 . 31

The l norm is

| | x n | | = sup n Z [ - 5 , 3 ] | x n | = 5 .
Got questions? Get instant answers now!

Signal norms summary

The notion of signal size or energy is formally addressed through the mathematical concept of norms. There are many types of norms that can be defined for signals, some of the most important of which have been discussed here. For each type norm and each type of signal domain (continuous or discrete, and finite or infinite) there are vector spaces defined for signals of finite norm. Finally, while nonzero periodic signals have infinite energy, they have finite power if their single period units have finite energy.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask