<< Chapter < Page Chapter >> Page >
This module discusses the theory and practical considerations behind the use of discrete time tools to process of continuous time signals.

Introduction

Digital computers can process discrete time signals using extremely flexible and powerful algorithms. However, most signals of interest are continuous time signals, which is how data almost always appears in nature. Now that the theory supporting methods for generating a discrete time signal from a continuous time signal through sampling and then perfectly reconstructing the original signal from its samples without error has been discussed, it will be shown how this can be applied to implement continuous time, linear time invariant systems using discrete time, linear time invariant systems. This is of key importance to many modern technologies as it allows the power of digital computing to be leveraged for processing of analog signals.

Discrete time processing of continuous time signals

Process structure

With the aim of processing continuous time signals using a discrete time system, we will now examine one of the most common structures of digital signal processing technologies. As an overview of the approach taken, the original continuous time signal x is sampled to a discrete time signal x s in such a way that the periods of the samples spectrum X s is as close as possible in shape to the spectrum of X . Then a discrete time, linear time invariant filter H 2 is applied, which modifies the shape of the samples spectrum X s but cannot increase the bandlimit of X s , to produce another signal y s . This is reconstructed with a suitable reconstruction filter to produce a continuous time output signal y , thus effectively implementing some continuous time system H 1 . This process is illustrated in [link] , and the spectra are shown for a specific case in [link] .

A block diagram for processing of continuous time signals using discrete time systems is shown.

Further discussion about each of these steps is necessary, and we will begin by discussing the analog to digital converter, often denoted by ADC or A/D. It is clear that in order to process a continuous time signal using discrete time techniques, we must sample the signal as an initial step. This is essentially the purpose of the ADC, although there are practical issues that which will be discussed later. An ADC takes a continuous time analog signal as input and produces a discrete time digital signal as output, with the ideal infinite precision case corresponding to sampling. As stated by the Nyquist-Shannon Sampling theorem, in order to retain all information about the original signal, we usually wish sample above the Nyquist frequency ω s 2 B where the original signal is bandlimited to ( - B , B ) . When it is not possible to guarantee this condition, an anti-aliasing filter should be used.

The discrete time filter is where the intentional modifications to the signal information occur. This is commonly done in digital computer software after the signal has been sampled by a hardware ADC and before it is used by a hardware DAC to construct the output. This allows the above setup to be quite flexible in the filter that it implements. If sampling above the Nyquist frequency the. Any modifications that the discrete filter makes to this shape can be passed on to a continuous time signal assuming perfect reconstruction. Consequently, the process described will implement a continuous time, linear time invariant filter. This will be explained in more mathematical detail in the subsequent section. As usual, there are, of course, practical limitations that will be discussed later.

Questions & Answers

Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask