<< Chapter < Page Chapter >> Page >
This module is part of a collection of modules that address engineering applications of PreCalculus. The collection is intended for use by students enrolled in a special section of MATH 1508 (PreCalculus) for preengineers at the University of Texas at El Paso.

Complex numbers


It is essential that engineers master the concept of complex numbers because the important role that complex numbers play in a variety of application areas. In this module applications in the field of electric circuits are provided.

Alternating current (ac) electric circuits

Earlier we introduced a number of components that are typically found in common electric circuits. These included voltage sources, current sources and resistors. We also observed that the behavior of an electric circuit could be predicted by using several laws from Physics, including Ohm’s Law and Kirchoff’s Laws.

In this laboratory exercise, we will introduce two additional components of electric circuits: the inductor and the capacitor. These elements are typically found in electric circuits which involve sinusoidally varying voltage or current sources. These circuits are called alternating current or AC circuits. AC circuits abound in the physical world. The voltage and current that power household appliances comes from AC sources.

Figure 1 shows the plot for a sinusoidally varying waveform that represents the output of an AC voltage source. Such a waveform could also be used to represent the current that is supplied by an AC current source. It is important to note that the waveform has a repetitive or periodic nature.

Sketch of a sinusoidal waveform.

In the figure, we note that the amount of time that occurs between successive maxima of the sinusoidal waveform is equal to the period . The angular frequency of the waveform is denoted by the symbol ω and is defined in terms of the period by the equation

ω = 2 π T rad / s size 12{ω= { {2`π} over {T} } ` ital "rad"/s} {}

If we denote the amplitude as V max , then we can express the sinusoidal waveform for the voltage mathematically as

v ( t ) = V max cos ( ω t + θ v ) size 12{v \( t \) =V rSub { size 8{"max"} } "cos" \( ω`t+θ rSub { size 8{v} } \) } {}

Here the instantaneous value of the voltage is measured in the units volts. The term θ v is called the phase angle of the sinusoidal waveform. It is measured in degrees. Its usage and importance in the analysis of AC circuits will be discussed later in the course during the study of trigonometry.

Inductors and capacitors are found in circuits of all types and designs, so their understanding is critical to the education of an engineer or scientist. One important distinction between resistors and these two new components (inductors and capacitors) is that they are analyzed using different mathematic techniques. In the case of a resistor, it was quite easy to determine the relationship between the current, voltage and resistance present in a circuit by means of simple algebra. In the case of the inductor and the capacitor, we will see that we must expand our knowledge of mathematics particulary in the are of complex numbers to analyze circuits that contain inductors and capacitors.

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Can someone give me problems that involes radical expressions like area,volume or motion of pendulum with solution

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Math 1508 (laboratory) engineering applications of precalculus. OpenStax CNX. Aug 24, 2011 Download for free at http://cnx.org/content/col11337/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Math 1508 (laboratory) engineering applications of precalculus' conversation and receive update notifications?