<< Chapter < Page Chapter >> Page >
This course is a short series of lectures on Statistical Bioinformatics. Topics covered are listed in the Table of Contents. The notes were preparedby Ewa Paszek, Lukasz Wita and Marek Kimmel. The development of this course has been supported by NSF 0203396 grant.


A central goal of molecular biology is to understand the regulation of protein synthesis and its reactions to external and internal signals. All the cells in an organism carry the same genomic data, yet their protein makeup can be drastically different both temporally and spatially, due to regulation. Protein synthesis is regulated by many mechanisms at its different stages. These include mechanisms for controlling transcription initiation, RNA splicing, mRNA transport, translation initiation, post-translational modifications, and degradation of mRNA/protein. One of the main junctions at which regulation occurs is mRNA transcription. A major role in this machinery is played by proteins themselves that bind to regulatory regions along the DNA, greatly affecting the transcription of the genes they regulate.In recent years, technical breakthroughs in spotting hybridization probes and advances in genome sequencing efforts lead to development of DNA microarrays, which consist of many species of probes, either oligonucleotides or cDNA, that are immobilized in a predefined organization to a solid phase. By using DNA microarrays, researchers are now able to measure the abundance of thousands of mRNA targets simultaneously ( DeRisi et al.,1997 ; Lockhart et al., 1996; Wen et al., 1998). Unlike classical experiments, where the expression levels of only a few genes were reported, DNA microarray experiments can measure all the genes of an organism, providing a“genomic”viewpoint on gene expression. As a consequence, this technology facilitates new experimental approaches for understanding gene expression and regulation (Iyer et al., 1999; Spellman et al., 1998).

A central focus of genomic research concerns understanding the manner in which cells execute and control the enormous number of operations required for their function. Biological systems behave in an exceedingly parallel and extraordinarily integrated fashion. Feedback and damping are routine even for the most common activities. Thus, in this area of genomic biology, single gene perspectives are becoming increasingly limited for gaining insight into biological processes. Network applications are becoming increasingly important for making progress in our understanding of the manner in which genes and molecules collectively form a biological system and harnessing this understanding in educated intervention for correcting human diseases. Such approaches inevitably require computational and formal methods to process massive amounts of data, understand general principles governing the system under study, and make useful predictions about system behavior in the presence of known conditions. There is a rather wide spectrum of approaches for modeling gene regulatory networks, each with its own assumptions, data requirements, and goals. The group of the most popular models includes: Boolean, Probabilistic Boolean and Bayesian networks.

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Introduction to bioinformatics. OpenStax CNX. Oct 09, 2007 Download for free at http://cnx.org/content/col10240/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to bioinformatics' conversation and receive update notifications?