Huffman source coder

 Page 1 / 1
This example shows how a Huffman coder allocates variable length codewords to the transmitted symbols depending on their probability of occurence.

Source coding

Huffman coding deploys variable length coding and then allocates the longer codewords to less frequently occurring symbols and shorter codewords to more regularly occurring symbols. By using this technique it can minimize the overall transmission rate as the regularly occurring symbols are allocated the shorter codewords.

Simple source coding

 Symbol Probability A 0.10 B 0.18 C 0.40 D 0.05 E 0.06 F 0.10 G 0.07 H 0.04

We have to start with knowledge of the probabilities of occurrence of all the symbols in the alphabet. The table above shows an example of an 8-symbol alphabet, A…H, with the associated probabilities for each of the eight individual symbols.

[link] shows that the entropy of this source data is 2.5524 bits/symbol.

 Symbol Code A 000 B 001 C 010 D 011 E 100 F 101 G 110 H 111

This shows the application of very simple coding where, as there are 8 symbols, we adopt a 3-bit code. [link] shows that the entropy of such a source is 2.5524 bit/symbol and, with the fixed 3 bit/symbol length allocated codewords, the efficiency of this simple coder would be only 2.5524/3.0 = 85.08%, which is a rather poor result.

Huffman coding

This is a variable length coding technique which involves two processes, reduction and splitting.

Reduction

We start by listing the symbols in descending order of probability, with the most probable symbol, C, at the top and the least probable symbol, H, at the foot, see left hand side of [link] . Next we reduce the two least probable symbols into a single symbol which has the combined probability of these two symbols summed together. Thus symbols H and D are combined into a single (i.e. reduced) symbol with probability 0.04 + 0.05 = 0.09.

Now the symbols have to be reordered again in descending order of probability. As the probability of the new H+D combined symbol (0.09) is no longer the smallest value it then moves up the reordered list as shown in the second left column in [link] .

This process is progressively repeated as shown in [link] until all symbols are combined into a single symbol whose probability must equal 1.00.

Splitting

The variable length codewords for each transmitted symbol are now derived by working backwards (from the right) through the tree structure created in [link] , by assigning a 0 to the upper branch of each combining operation and a 1 to the lower branch.

The final “combined symbol” of probability 1.00 is thus split into two parts of probability 0.60 with assigned digit of 0 and another part with probability 0.40 with assigned digit of 1. This latter part with probability 0.40 and assigned digit of 1 actually represents symbol C, [link] .

The “combined symbol” with probability 0.60 (and allocated first digit of 0) is now split into two further parts with probability 0.37 with an additional or second assigned digit of 0 (i.e. its code is now 00) and another part with the remaining probability 0.23 where the additional assigned digit is 1 and associated code will now be 01.

This process is repeated by adding each new digit after the splitting operation to the right of the previous one. Note how this allocates short codes to the more probable symbols and longer codes to the less probable symbols, which are transmitted less often.

 Symbol Code A 011 B 001 C 1 D 00010 E 0101 F 0000 G 0100 H 00011

Code efficiency

[link] summarises the codewords now allocated to each of the transmitted symbols A…H and also calculates the average length of this source coder as 2.61 bits/symbol. Note the considerable reduction from the fixed length of 3 in the simple 3-bit coder in earlier table.

Now recall from [link] that the entropy of the source data was 2.5524 bits/symbol and the simple fixed length 3-bit code in the earlier table, with a length of 3.00 which gave an efficiency of only 85.08%.

The efficiency of the Huffman coded data with its variable length codewords is therefore 2.5524/2.62 = 97.7% which is a much more acceptable result.

If the symbol probabilities all have values 1/( ${2}^{n}$ ) which are integer powers of 2 then Huffmann coding will result in 100% efficiency.

This module has been created from lecture notes originated by P M Grant and D G M Cruickshank which are published in I A Glover and P M Grant, "Digital Communications", Pearson Education, 2009, ISBN 978-0-273-71830-7. Powerpoint slides plus end of chapter problem examples/solutions are available for instructor use via password access at http://www.see.ed.ac.uk/~pmg/DIGICOMMS/

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!