# 1.4 Transformation of functions  (Page 8/22)

 Page 8 / 22

Write the formula for the function that we get when we stretch the identity toolkit function by a factor of 3, and then shift it down by 2 units.

$g\left(x\right)=3x-2$

## Horizontal stretches and compressions

Now we consider changes to the inside of a function. When we multiply a function’s input by a positive constant, we get a function whose graph is stretched or compressed horizontally in relation to the graph of the original function. If the constant is between 0 and 1, we get a horizontal stretch ; if the constant is greater than 1, we get a horizontal compression of the function.

Given a function $\text{\hspace{0.17em}}y=f\left(x\right),\text{\hspace{0.17em}}$ the form $\text{\hspace{0.17em}}y=f\left(bx\right)\text{\hspace{0.17em}}$ results in a horizontal stretch or compression. Consider the function $\text{\hspace{0.17em}}y={x}^{2}.\text{\hspace{0.17em}}$ Observe [link] . The graph of $\text{\hspace{0.17em}}y={\left(0.5x\right)}^{2}\text{\hspace{0.17em}}$ is a horizontal stretch of the graph of the function $\text{\hspace{0.17em}}y={x}^{2}\text{\hspace{0.17em}}$ by a factor of 2. The graph of $\text{\hspace{0.17em}}y={\left(2x\right)}^{2}\text{\hspace{0.17em}}$ is a horizontal compression of the graph of the function $\text{\hspace{0.17em}}y={x}^{2}\text{\hspace{0.17em}}$ by a factor of 2.

## Horizontal stretches and compressions

Given a function $\text{\hspace{0.17em}}f\left(x\right),\text{\hspace{0.17em}}$ a new function $\text{\hspace{0.17em}}g\left(x\right)=f\left(bx\right),\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ is a constant, is a horizontal stretch    or horizontal compression    of the function $\text{\hspace{0.17em}}f\left(x\right).$

• If $\text{\hspace{0.17em}}b>1,\text{\hspace{0.17em}}$ then the graph will be compressed by $\text{\hspace{0.17em}}\frac{1}{b}.$
• If $\text{\hspace{0.17em}}0 then the graph will be stretched by $\text{\hspace{0.17em}}\frac{1}{b}.$
• If $\text{\hspace{0.17em}}b<0,\text{\hspace{0.17em}}$ then there will be combination of a horizontal stretch or compression with a horizontal reflection.

Given a description of a function, sketch a horizontal compression or stretch.

1. Write a formula to represent the function.
2. Set $\text{\hspace{0.17em}}g\left(x\right)=f\left(bx\right)\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}b>1\text{\hspace{0.17em}}$ for a compression or $\text{\hspace{0.17em}}0 for a stretch.

## Graphing a horizontal compression

Suppose a scientist is comparing a population of fruit flies to a population that progresses through its lifespan twice as fast as the original population. In other words, this new population, $\text{\hspace{0.17em}}R,\text{\hspace{0.17em}}$ will progress in 1 hour the same amount as the original population does in 2 hours, and in 2 hours, it will progress as much as the original population does in 4 hours. Sketch a graph of this population.

Symbolically, we could write

See [link] for a graphical comparison of the original population and the compressed population.

## Finding a horizontal stretch for a tabular function

A function $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ is given as [link] . Create a table for the function $\text{\hspace{0.17em}}g\left(x\right)=f\left(\frac{1}{2}x\right).$

 $x$ 2 4 6 8 $f\left(x\right)$ 1 3 7 11

The formula $\text{\hspace{0.17em}}g\left(x\right)=f\left(\frac{1}{2}x\right)\text{\hspace{0.17em}}$ tells us that the output values for $\text{\hspace{0.17em}}g\text{\hspace{0.17em}}$ are the same as the output values for the function $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ at an input half the size. Notice that we do not have enough information to determine $\text{\hspace{0.17em}}g\left(2\right)\text{\hspace{0.17em}}$ because $\text{\hspace{0.17em}}g\left(2\right)=f\left(\frac{1}{2}\cdot 2\right)=f\left(1\right),\text{\hspace{0.17em}}$ and we do not have a value for $\text{\hspace{0.17em}}f\left(1\right)\text{\hspace{0.17em}}$ in our table. Our input values to $\text{\hspace{0.17em}}g\text{\hspace{0.17em}}$ will need to be twice as large to get inputs for $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ that we can evaluate. For example, we can determine $\text{\hspace{0.17em}}g\left(4\right)\text{.}$

$g\left(4\right)=f\left(\frac{1}{2}\cdot 4\right)=f\left(2\right)=1$

We do the same for the other values to produce [link] .

 $x$ 4 8 12 16 $g\left(x\right)$ 1 3 7 11

[link] shows the graphs of both of these sets of points.

## Recognizing a horizontal compression on a graph

Relate the function $\text{\hspace{0.17em}}g\left(x\right)\text{\hspace{0.17em}}$ to $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ in [link] .

The graph of $\text{\hspace{0.17em}}g\left(x\right)\text{\hspace{0.17em}}$ looks like the graph of $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ horizontally compressed. Because $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ ends at $\text{\hspace{0.17em}}\left(6,4\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)\text{\hspace{0.17em}}$ ends at $\text{\hspace{0.17em}}\left(2,4\right),\text{\hspace{0.17em}}$ we can see that the $\text{\hspace{0.17em}}x\text{-}$ values have been compressed by $\text{\hspace{0.17em}}\frac{1}{3},\text{\hspace{0.17em}}$ because $\text{\hspace{0.17em}}6\left(\frac{1}{3}\right)=2.\text{\hspace{0.17em}}$ We might also notice that $\text{\hspace{0.17em}}g\left(2\right)=f\left(6\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(1\right)=f\left(3\right).\text{\hspace{0.17em}}$ Either way, we can describe this relationship as $\text{\hspace{0.17em}}g\left(x\right)=f\left(3x\right).\text{\hspace{0.17em}}$ This is a horizontal compression by $\text{\hspace{0.17em}}\frac{1}{3}.$

what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
how to synthesize TiO2 nanoparticles by chemical methods
Zubear
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!