<< Chapter < Page Chapter >> Page >

Writing reaction equations for Δ H f °

Write the heat of formation reaction equations for:

(a) C 2 H 5 OH( l )

(b) Ca 3 (PO 4 ) 2 ( s )

Solution

Remembering that Δ H f ° reaction equations are for forming 1 mole of the compound from its constituent elements under standard conditions, we have:

(a) 2 C ( s , graphite ) + 3 H 2 ( g ) + 1 2 O 2 ( g ) C 2 H 5 OH ( l )

(b) 3 Ca ( s ) + 1 2 P 4 ( s ) + 4 O 2 ( g ) Ca 3 ( PO 4 ) 2 ( s )

Note: The standard state of carbon is graphite, and phosphorus exists as P 4 .

Check your learning

Write the heat of formation reaction equations for:

(a) C 2 H 5 OC 2 H 5 ( l )

(b) Na 2 CO 3 ( s )

Answer:

(a) 4 C ( s , graphite ) + 5 H 2 ( g ) + 1 2 O 2 ( g ) C 2 H 5 OC 2 H 5 ( l ) ; (b) 2 Na ( s ) + C ( s , graphite ) + 3 2 O 2 ( g ) Na 2 CO 3 ( s )

Got questions? Get instant answers now!

Hess’s law

There are two ways to determine the amount of heat involved in a chemical change: measure it experimentally, or calculate it from other experimentally determined enthalpy changes. Some reactions are difficult, if not impossible, to investigate and make accurate measurements for experimentally. And even when a reaction is not hard to perform or measure, it is convenient to be able to determine the heat involved in a reaction without having to perform an experiment.

This type of calculation usually involves the use of Hess’s law    , which states: If a process can be written as the sum of several stepwise processes, the enthalpy change of the total process equals the sum of the enthalpy changes of the various steps . Hess’s law is valid because enthalpy is a state function: Enthalpy changes depend only on where a chemical process starts and ends, but not on the path it takes from start to finish. For example, we can think of the reaction of carbon with oxygen to form carbon dioxide as occurring either directly or by a two-step process. The direct process is written:

C ( s ) + O 2 ( g ) CO 2 ( g ) Δ H 298 ° = −394 kJ

In the two-step process, first carbon monoxide is formed:

C ( s ) + 1 2 O 2 ( g ) CO ( g ) Δ H 298 ° = −111 kJ

Then, carbon monoxide reacts further to form carbon dioxide:

CO ( g ) + 1 2 O 2 ( g ) CO 2 ( g ) Δ H 298 ° = −283 kJ

The equation describing the overall reaction is the sum of these two chemical changes:

Step 1: C ( s ) + 1 2 O 2 ( g ) CO ( g ) Step 2: CO ( g ) + 1 2 O 2 ( g ) CO 2 ( g ) ¯ Sum: C ( s ) + 1 2 O 2 ( g ) + CO ( g ) + 1 2 O 2 ( g ) CO ( g ) + CO 2 ( g )

Because the CO produced in Step 1 is consumed in Step 2, the net change is:

C ( s ) + O 2 ( g ) CO 2 ( g )

According to Hess’s law, the enthalpy change of the reaction will equal the sum of the enthalpy changes of the steps. We can apply the data from the experimental enthalpies of combustion in [link] to find the enthalpy change of the entire reaction from its two steps:

C ( s ) + 1 2 O 2 ( g ) CO ( g ) Δ H 298 ° = −111 kJ CO ( g ) + 1 2 O 2 ( g ) CO 2 ( g ) C ( s ) + O 2 ( g ) CO 2 ( g ) Δ H 298 ° = −283 kJ Δ H 298 ° = −394 kJ

The result is shown in [link] . We see that Δ H of the overall reaction is the same whether it occurs in one step or two. This finding (overall Δ H for the reaction = sum of Δ H values for reaction “steps” in the overall reaction) is true in general for chemical and physical processes.

A diagram is shown. A long arrow faces upward on the left with the phrase “H increasing.” A horizontal line at the bottom of the diagram is shown with the formula “C O subscript 2 (g)” below it. A horizontal line at the top of the diagram has the formulas “C (s) + O subscript 2 (g)” above it. The top and bottom lines are connected by a downward facing arrow with the value “Δ H = –394 k J” written beside it. Below and to the right of the top horizontal line is a second horizontal line with the equations “C O (g) + one half O subscript 2 (g)” above it. This line and the bottom line are connected by a downward facing arrow with the value “Δ H = –283 k J” written beside it. The same line and the top line are connected by a downward facing arrow with the value “Δ H = –111 k J” written beside it. There are three brackets to the right of the diagram. The first bracket runs from the top horizontal line to the second horizontal line. It is labeled, “Enthalpy of reactants.” The second bracket runs from the second horizontal line to the bottom horizontal line. It is labeled, “Enthalpy of products.” Both of these brackets are included in the third bracket which runs from the top to the bottom of the diagram. It is labeled, “Enthalpy change of exothermic reaction in 1 or 2 steps.”
The formation of CO 2 ( g ) from its elements can be thought of as occurring in two steps, which sum to the overall reaction, as described by Hess’s law. The horizontal blue lines represent enthalpies. For an exothermic process, the products are at lower enthalpy than are the reactants.

Questions & Answers

what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
The eyes of some reptiles are sensitive to 850 nm light. If the minimum energy to trigger the receptor at this wavelength is 3.15 x 10-14 J, what is the minimum number of 850 nm photons that must hit the receptor in order for it to be triggered?
razzyd Reply
A teaspoon of the carbohydrate sucrose contains 16 calories, what is the mass of one teaspoo of sucrose if the average number of calories for carbohydrate is 4.1 calories/g?
ifunanya Reply
4. On the basis of dipole moments and/or hydrogen bonding, explain in a qualitative way the differences in the boiling points of acetone (56.2 °C) and 1-propanol (97.4 °C), which have similar molar masses
Kyndall Reply
Calculate the bond order for an ion with this configuration: (?2s)2(??2s)2(?2px)2(?2py,?2pz)4(??2py,??2pz)3
Gabe Reply
Which of the following will increase the percent of HF that is converted to the fluoride ion in water? (a) addition of NaOH (b) addition of HCl (c) addition of NaF
Tarun Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask