# Perception of sound  (Page 2/3)

 Page 2 / 3

The screencast video of illustrates two different approaches to this problem, and demonstrates the perceptual effects that result from treating pitch perception as linear instead of logarithmic.

## Intensity and amplitude

Perception of sound intensity also logarithmic. When you judge one sound to be twice as loud as another, you actually perceive the ratio of the two sound intensities. For example, consider the case of two people talking with one another. You may decide that one person talks twice as loud as the other, and then measure the acoustic power emanating from each person; call these two measurements ${T}_{1}$ and ${T}_{2}$ . Next, suppose that you are near an airport runway, and decide that the engine noise of one aircraft is twice the intensity of another aircraft (you also measure these intensities as ${A}_{1}$ and ${A}_{2}$ ). In terms of acoustic intensity, the difference between the talkers ${T}_{2}-{T}_{1}$ is negligible compared to the enormous difference in acoustic intensity ${A}_{2}-{A}_{1}$ . However, the ratios ${T}_{2}/{T}_{1}$ and ${A}_{2}/{A}_{1}$ would be identical.

The decibel (abbreviated dB ) is normally used to describe ratios of acoustic intensity. The decibel is defined in :

${R}_{\text{dB}}=10{\mathrm{log}}_{10}\left(\frac{{I}_{2}}{{I}_{1}}\right)$

where ${I}_{1}$ and ${I}_{2}$ represent two acoustic intensities to be compared, and ${R}_{\text{dB}}$ denotes the ratio of the two intensities.

Acoustic intensity measures power per unit area, with a unit of watts per square meter. The operative word here is power . When designing or manipulating audio signals, you normally think in terms of amplitude , however. The power of a signal is proportional to the square of its amplitude. Therefore, when considering the ratios of two amplitudes ${A}_{1}$ and ${A}_{2}$ , the ratio in decibels is defined as in :

${R}_{\text{dB}}=20{\mathrm{log}}_{10}\left(\frac{{A}_{2}}{{A}_{1}}\right)$

Can you explain why "10" becomes "20"? Recall that $\mathrm{log}\left({a}^{b}\right)=b\mathrm{log}\left(a\right)$ .

Often it is desirable to synthesize an audio signal so that its perceived intensity will follow a specific trajectory . For example, suppose that the intensity should begin at silence, gradually increase to a maximum value, and then gradually decrease back to silence. Furthermore, suppose that you should perceive a uniform rate of change in intensity.

The screencast video of illustrates two different approaches to this problem, and demonstrates the perceptual effects that result from treating intensity perception as linear instead of logarithmic.

## Harmonics and overtones

Musical instruments produce sound composed of a fundamental frequency and harmonics or overtones . The relative strength and number of harmonics produced by an instrument is called timbre , a property that allows the listener to distinguish between a violin, an oboe, and a trumpet that all sound the same pitch. See Timbre: The Color of Music for further discussion.

You perhaps have studied the concept of Fourier series, which states that any periodic signal can be expressed as a sum of sinusoids, where each sinusoid is an exact integer multiple of the fundamental frequency; refer to :

find the 15th term of the geometric sequince whose first is 18 and last term of 387
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!