<< Chapter < Page Chapter >> Page >

So: -(-128) = -128.

Because 128 is out of the range of signed 8bits numbers.

3.2 addition and subtraction:

Addition and Subtraction is done using following steps:

  • Normal binary addition
  • Monitor sign bit for overflow
  • Take twos compliment of subtrahend and add to minuend ,i.e. a - b = a + (-b)

Hardware for addition and subtraction:

3.3 multiplying positive numbers:

The multiplying is done using following steps:

  • Work out partial product for each digit
  • Take care with place value (column)
  • Add partial products

Hardware implementation of unsigned binary multiplication:

Execution of example:

Flowchart for unsigned binary multiplication:

3.4 multiplying negative numbers

Solution 1:

  • Convert to positive if required
  • Multiply as above
  • If signs were different, negate answer

Solution 2:

  • Booth’s algorithm:

Example of Booth’s Algorithm:

3.5 division:

  • More complex than multiplication
  • Negative numbers are really bad!
  • Based on long division
  • (for more detail, reference to Computer Organization and Architecture, William Stalling)

4. floating-point representation

4.1 principles

We can represent a real number in the form

± S × B ± E size 12{ +- S times B rSup { size 8{ +- E} } } {}

This number can be stored in a binary word with three fields:

  • Sign: plus or minus
  • Significant: S
  • Exponent: E.

(A fixed value, called the bias, is subtracted from the biased exponent field to get the true exponent value (E). Typically, the bias equal 2 k 1 1 size 12{2 rSup { size 8{k - 1} } - 1} {} , where k is the number of bits in the binary exponent)

  • The base B is implicit and need not be stored because it is the same for all numbers.

4.2 ieee standard for binary floating-point representation

The most important floating-point representation is defined in IEEE Standard 754 [EEE8]. This standard was developed to facilitate the portability of programs from one processor to another and to encourage the development of sophisticated, numerically oriented programs. The standard has been widely adopted and is used on virtually all contemporary processors and arithmetic coprocessors.

The IEEE standard defines both a 32-bit (Single-precision) and a 64-bit (Double-precision) double format with 8-bit and 11-bit exponents, respectively. Binary floating-point numbers are stored in a form where the MSB is the sign bit, exponent is the biased exponent, and "fraction" is the significand. The implied base (B) is 2.

Not all bit patterns in the IEEE formats are interpreted in die usual way; instead, some bit patterns are used to represent special values. Three special cases arise:

  1. if exponent is 0 and fraction is 0, the number is ±0 (depending on the sign bit)
  2. if exponent = 2 e size 12{2 rSup { size 8{e} } } {} -1 and fraction is 0, the number is ±infinity (again depending on the sign bit), and
  3. if exponent = 2 e size 12{2 rSup { size 8{e} } } {} -1 and fraction is not 0, the number being represented is not a number (NaN).

This can be summarized as:

Single-precision 32 bit

A single-precision binary floating-point number is stored in 32 bits.

The number has value v:

v = s × 2 e size 12{2 rSup { size 8{e} } } {} × m

Where

s = +1 (positive numbers) when the sign bit is 0

s = −1 (negative numbers) when the sign bit is 1

e = Exp − 127 (in other words the exponent is stored with 127 added to it, also called "biased with 127")

m = 1.fraction in binary (that is, the significand is the binary number 1 followed by the radix point followed by the binary bits of the fraction). Therefore, 1 ≤ m<2.

In the example shown above:

S=1

E= 011111100(2) -127 = -3

M=1.01 (in binary, which is 1.25 in decimal).

The represented number is: +1.25 × 2−3 = +0.15625.

5. floating-point arithmetic

The basic operations for floating-point X1 = M1 R E1 size 12{X1=M1*R rSup { size 8{E1} } } {} and X2 = M2 R E2 size 12{X2=M2*R rSup { size 8{E2} } } {}

  • X1 ± X2 = ( M1 R E1 E2 ) R E2 size 12{X1 +- X2= \( M1*R rSup { size 8{E1 - E2} } \) R rSup { size 8{E2} } } {} (assume E1 size 12{<= {}} {} E2)
  • X1 X2 = ( M1 M2 ) R E1 + E2 size 12{X1*X2= \( M1*M2 \) R rSup { size 8{E1+E2} } } {}
  • X1 / X2 = ( M1 / M2 ) R E1 E2 size 12{X1/X2= \( M1/M2 \) R rSup { size 8{E1 - E2} } } {}

For addi­tion and subtraction, it is necessary lo ensure that both operands have the same exponent value. I his may require shifting the radix point on one of the operands to achieve alignment. Multiplication and division are more straightforward.

A floating-point operation may produce one of these conditions:

  • Exponent overflow: A positive exponent exceeds the maximum possible expo­nent value. In some systems, this may be designated as
  • Exponent underflow: A negative exponent is less than the minimum possible exponent value (e.g.. -200 is less than -127). This means that the number is too small to be represented, and it may be reported as 0.
  • Significand underflow: In the process of aligning significands, digits may flow off the right end of the significand. Some form of rounding is required.
  • Significand overflow: The addition of two significands of the same sign may result in a carry out of the most significant bit. This can be fixed by realign­ment.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Computer architecture. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10761/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Computer architecture' conversation and receive update notifications?

Ask