# 4.3 Transformation of graphs by greatest integer function  (Page 2/2)

 Page 2 / 2

2 : Identify points of intersections of graph with parallel lines drawn in the earlier step.

3 : Draw lines of 1 unit parallel to x-axis from intersection points in the direction of positive x. The line ends at the next parallel line on right. Include intersection point but exclude other end of the line. Include transformation for all points of the graph.

The lines drawn in step 3 is the graph of y=f([x]).

Problem : Draw the graph of sin[x].

Solution : Following the construction steps, graph of y=sin[x]is drawn as shown here.

Problem : Draw graph of tan⁻¹[x], x∈[-2, 2].

Solution : Following the construction steps, graph of y= tan⁻¹ [x]is drawn as shown here.

See that function value corresponding to x=2 and x=-2 are not included in the preceding interval on the graph. As such, we need to put a solid circle at x=2 and x=-2 additionally. Further, we need to remove original graph of y= tan⁻¹ x (this step is not shown in the figure above).

## Greatest integer operator applied to the function

The form of transformation is depicted as :

$y=f\left(x\right)\phantom{\rule{1em}{0ex}}⇒\phantom{\rule{1em}{0ex}}y=\left[f\left(x\right)\right]$

The graph of y= f(x) is transformed in y=[f(x)] by applying changes to the output of the function. Whatever be the function values, they will be changed to integral values following definition of greatest integer values as given earlier for few intervals. Clearly, real values of “f(x)” are truncated to integer values in the interval of unity i.e. [-1,0), [0,1), [1.2) etc along y-axis.

From the point of construction of the graph of y=f([x]), we need to modify the graph of y=f(x) as :

1 : Draw lines parallel to x-axis (horizontal lines) at integral values along y-axis to cover the graph of y=f(x).

2 : Identify points of intersections of graph with parallel lines drawn in the earlier step. Draw lines parallel to y-axis (vertical lines) from the intersection points identified.

3 : Take x-projection of curve from the point of intersection between two consecutive vertical lines such that it lies on horizontal line of lower value. Include intersection point but exclude other end of the line. Further include points not covered by the projection.

The lines drawn in step 3 is the graph of y=[f(x)].

Problem : Draw the graph of [2sinx].

Solution : Following the construction steps, graph of y=[2sinx]is drawn as shown here.

## Values assigned to greatest integer function

The form of transformation is depicted as :

$y=f\left(x\right)\phantom{\rule{1em}{0ex}}⇒\phantom{\rule{1em}{0ex}}\left[y\right]=f\left(x\right)$

We need to evaluate this equation on the basis of assignment to the dependent expression. The value of function f(x) is first calculated for a given value of x. The value so evaluated is assigned to the GIF function [y]. We interpret assignment to [y]in accordance with the interpretation of equality of the GIF function to a value. In this case, we know that :

$\left[y\right]=f\left(x\right);\phantom{\rule{1em}{0ex}}f\left(x\right)\notin Z\phantom{\rule{1em}{0ex}}⇒\text{GIF can not be equated to non-integers. No solution.}$

$\left[y\right]=f\left(x\right);\phantom{\rule{1em}{0ex}}f\left(x\right)\in Z\phantom{\rule{1em}{0ex}}⇒\text{y = Continuous interval of 1 unit starting from f(x)}$

Clearly, we need to neglect plot corresponding to all non-integral values of f(x). For every value of x, which yields integral value of f(x), there are multiple values of dependent expression [y] in an interval of 1 unit. For example, for $\left[y\right]=f\left(x\right)=2,y\in 2\le y<3$ . In the nutshell, this graph is not continuous. There is no value of y corresponding to non integer f(x) and there are multiple values of y in an interval of 1 for integral values of f(x).

From the point of construction of the graph of |y|=f(x), we need to modify the graph of y=f(x) as :

1 : Draw lines parallel to x-axis (horizontal lines) at integral values along y-axis to cover the graph of y=f(x).

2 : Identify points of intersections of graph with parallel lines (horizontal lines) drawn in the earlier step.

3 : Draw lines of 1 unit parallel to y-axis (vertical lines) from intersection points in the positive y-direction. Include intersection point but exclude other end of the line.

The lines drawn in step 3 is the graph of [y]= f(x).

Problem : Draw graph of [y]=(x+1)(x-2).

Solution : We first draw the graph of quadratic polynomial function $y=\left(x+1\right)\left(x-2\right)={x}^{2}-x-2$ . The lowest point of the parabola is calculated as :

$D={\left(-1\right)}^{2}-\left(4X1X-2\right)=1+8=9$

${y}_{\mathrm{min}}=-\frac{D}{4a}=-\frac{9}{4X1}=-2.25$

Following construction steps, graph of [y]=(x+1)(x-2) is drawn as shown here.

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
What is power set
Period of sin^6 3x+ cos^6 3x
Period of sin^6 3x+ cos^6 3x