The student will calculate probabilities using the Central Limit Theorem.

Given

Yoonie is a personnel manager in a large corporation. Each month she must review 16 of the employees. From past experience, she has found that the reviews take her approximately 4 hours each to do with a population standard deviation of 1.2 hours. Let
$X$ be the random variable representing the time it takes her to complete one review. Assume
$X$ is normally distributed. Let
$\overline{X}$ be the random variable representing the mean time to complete the 16 reviews. Let
$\mathrm{\Sigma X}$ be the total time it takes Yoonie to complete all of the month’s reviews. Assume that the 16 reviews represent a random set of reviews.

Distribution

Complete the distributions.

$X$ ~

$\overline{X}$ ~

$\mathrm{\Sigma X}$ ~

Graphing probability

For each problem below:

Sketch the graph. Label and scale the horizontal axis. Shade the region corresponding to the probability.

Calculate the value.

Find the probability that
one review will take Yoonie from 3.5 to 4.25 hours.

In this morden time nanotechnology used in many field .
1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc
2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc
3- Atomobile -MEMS, Coating on car etc.
and may other field for details you can check at Google

Azam

anybody can imagine what will be happen after 100 years from now in nano tech world

Prasenjit

after 100 year this will be not nanotechnology maybe this technology name will be change .
maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments

Azam

name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world

Prasenjit

how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?

Damian

silver nanoparticles could handle the job?

Damian

not now but maybe in future only AgNP maybe any other nanomaterials

Azam

Hello

Uday

I'm interested in Nanotube

Uday

this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15

Prasenjit

can nanotechnology change the direction of the face of the world

At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.

Privacy Information Security Software Version 1.1a

Good

1 It is estimated that 30% of all drivers have some kind of medical aid in South Africa. What is the probability that in a sample of 10 drivers: 3.1.1 Exactly 4 will have a medical aid. (8) 3.1.2 At least 2 will have a medical aid. (8) 3.1.3 More than 9 will have a medical aid.