<< Chapter < Page Chapter >> Page >

Inleiding

In graag 10 het jy verskillende grafieke se vorms bestudeer. In hierdie hoofstuk sal jy leer van grafieke van funksies.

Funksies in die vorm y = a x + p + q

Hierdie vorm van die hiperboliese funksie is effens meer kompleks as die vorms wat in graad 10 teëgekom is.

Algemene vorm en posisie van die grafiek van ‘n funksie in die vorm f ( x ) = a x + p + q . Die asimptote word aangedui as stippellyne.

Ondersoek: funksies van die vorm y = a x + p + q

  1. Op dieselfde assestelsel, teken die volgende grafieke:
    1. a ( x ) = - 2 x + 1 + 1
    2. b ( x ) = - 1 x + 1 + 1
    3. c ( x ) = 0 x + 1 + 1
    4. d ( x ) = 1 x + 1 + 1
    5. e ( x ) = 2 x + 1 + 1
    Gebruik die resultate om die effek af te lei van Use your results to deduce the effect of a .
  2. Op dieselfde assestelsel, teken die volgende grafieke:
    1. f ( x ) = 1 x - 2 + 1
    2. g ( x ) = 1 x - 1 + 1
    3. h ( x ) = 1 x + 0 + 1
    4. j ( x ) = 1 x + 1 + 1
    5. k ( x ) = 1 x + 2 + 1
    Gebruik jou resultate om die effekte af te lei van p .
  3. Deur die algemene metode van die bogenoemde aktiwiteite, kies jou eie waardes van a en p om 5 verskillende grafieke te teken van y = a x + p + q om die effekte van q af te lei.

Jy behoort te gevind het dat die teken van a beïnvloed of die grafiek in die eerste en derde of in die tweede en vierde kwadrant van die Cartesiese vlak is.

Jy sou ook gevind het dat die waarde vand p beïnvloed of die x -afsnit negatief ( p > 0 ) of positief( p < 0 ) is.

Jy behoort ook te gevind het dat die waarde van q beïnvloed of die grafiek bo die x -as ( q > 0 ) of onder die x -as ( q < 0 ) lê.

Hierdie verskillende eienskappe word opgesom in [link] . Die asse van simmetrie vir elke grafiek word vertoon as ‘n stippellyn.

Tabel wat die algemene vorms en posisies opsom van funksies in die vorm y = a x + p + q . Die asse van simmetrie word vertoon as stippellyne.
p < 0 p > 0
a > 0 a < 0 a > 0 a < 0
q > 0
q < 0

Gebied en terrein

Vir y = a x + p + q , is die funksie ongedefinieerd vir x = - p . Die gebied is daarom { x : x R , x - p } .

Ons sien dat y = a x + p + q kan herskryf word as:

y = a x + p + q y - q = a x + p As x - p dan is : ( y - q ) ( x + p ) = a x + p = a y - q

Dit wys dat die funksie ongedefinieerd is by y = q . Die terrein van f ( x ) = a x + p + q is daarom { f ( x ) : f ( x ) R , f ( x ) q .

Byvoorbeeld, die gebied van g ( x ) = 2 x + 1 + 2 is { x : x R , x - 1 } want g ( x ) is ongedefinieerd by x = - 1 .

y = 2 x + 1 + 2 ( y - 2 ) = 2 x + 1 ( y - 2 ) ( x + 1 ) = 2 ( x + 1 ) = 2 y - 2

Ons kan sien dat g ( x ) is ongedefinieerd by y = 2 . Daarom is die gebied { g ( x ) : g ( x ) ( - , 2 ) ( 2 , ) } .

Gebied en terrein

  1. Bepaal die terrein van y = 1 x + 1 .
  2. Gegewe: f ( x ) = 8 x - 8 + 4 . Write down the domain of f .
  3. Bepaal die gebied van y = - 8 x + 1 + 3

Afsnitte

Vir funksies van die vorm, y = a x + p + q , word die afsnitte met die x en y assebereken deur x = 0 te stel vir die y -afsnit en deur y = 0 te stel vir die x -afsnit.

The y -intercept is calculated as follows:

y = a x + p + q y i n t = a 0 + p + q = a p + q

Byvoorbeeld, die y -afsnit van g ( x ) = 2 x + 1 + 2 word verkry deur x = 0 te stel, wat lewer:

y = 2 x + 1 + 2 y i n t = 2 0 + 1 + 2 = 2 1 + 2 = 2 + 2 = 4

Die x -afsnitte word bereken deur y = 0 te stel as volg:

y = a x + p + q 0 = a x i n t + p + q a x i n t + p = - q a = - q ( x i n t + p ) x i n t + p = a - q x i n t = a - q - p

Byvoorbeeld, die x -afsnit van g ( x ) = 2 x + 1 + 2 word gegee deur x = 0 te stel om die volgende te kry:

y = 2 x + 1 + 2 0 = 2 x i n t + 1 + 2 - 2 = 2 x i n t + 1 - 2 ( x i n t + 1 ) = 2 x i n t + 1 = 2 - 2 x i n t = - 1 - 1 x i n t = - 2

Afsnitte

  1. Gegewe: h ( x ) = 1 x + 4 - 2 . Bepaal die koördinate van die afsnitte van h met die x- en y-asse.
  2. Bepaal die x-afsnit van die grafiek van y = 5 x + 2 . Hoekom is daar geen y-afsnit vir hierdie funksie nie?

Asimptote

Daar is twee asimptote vir funksies van die vorm y = a x + p + q . Hulle word bepaal deur die gebied en terrein te ondersoek.

Ons het gesien dat die funksie ongedefinieerd was by x = - p en vir y = q . Daarom is die asimptote x = - p en y = q .

Byvoorbeeld, die gebied van g ( x ) = 2 x + 1 + 2 is { x : x R , x - 1 } because g ( x ) is ongedefinieerd by x = - 1 . Ons sien ook dat g ( x ) is ongedefinieerd by y = 2 . Daarom is die terrein { g ( x ) : g ( x ) ( - , 2 ) ( 2 , ) } .

Hieruit kan ons aflei dat die asimptote lê by x = - 1 en y = 2 .

Asimptote

  1. Gegewe: h ( x ) = 1 x + 4 - 2 . Bepaal die vergelykings van die asimptote van h .
  2. Skryf die vergelyking neer van die vertikale asimptoot van die funksie y = 1 x - 1 .

Teken grafieke van die vorm f ( x ) = a x + p + q

Ten einde grafieke te teken van funksies van die vorm, f ( x ) = a x + p + q , moet ons vier eienskappebepaal met berekeninge:

  1. gebied en terrein
  2. asimptote
  3. y -afsnit
  4. x -afsnit

Byvoorbeeld, teken die grafiek van g ( x ) = 2 x + 1 + 2 . Dui die afsnitte en asimptote aan.

Ons het bepaal dat die gebied is { x : x R , x - 1 } en die terrein is { g ( x ) : g ( x ) ( - , 2 ) ( 2 , ) } . Daarom is die asimptote by x = - 1 en y = 2 .

Die y -intercept is y i n t = 4 en die x -afsnit is x i n t = - 2 .

Grafiek van g ( x ) = 2 x + 1 + 2 .

Grafieke

  1. Teken die grafiek van y = 1 x + 2 . Dui die horisontale asimptoot aan.
  2. Gegewe: h ( x ) = 1 x + 4 - 2 . Teken die grafiek van h en dui duidelik die asimptote en ALLE afsnitte met die asse.
  3. Teken die grafiek van y = 1 x en y = - 8 x + 1 + 3 op die selfdeassestelsel.
  4. Teken die grafiek van y = 5 x - 2 , 5 + 2 . Verduidelik jou metode.
  5. Teken die grafiek van die funksie gedefinieer deur y = 8 x - 8 + 4 . Dui die asimptote en die afsnitte met die asse aan.

Einde van die hoofstuk oefeninge

  1. Teken die grafeik van die hiperbool gedefinieer deur y = 2 x vir - 4 x 4 . Veronderstel die hiperbool word geskuif met 3 eenhede na regs en 1 eenheid af. Wat is die nuwe vergelyking nou?
  2. Gebaseer op die grafiek van y = 1 x , bepaal die vergelyking van grafiek met asimptote y = 2 en x = 1 wat deur die punt (2; 3) gaan.

Questions & Answers

how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Siyavula textbooks: wiskunde (graad 11). OpenStax CNX. Sep 20, 2011 Download for free at http://cnx.org/content/col11339/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 11)' conversation and receive update notifications?

Ask