<< Chapter < Page Chapter >> Page >

Foundation

In beginning our study of the reactions of gases, we will assume a knowledge of the physical properties ofgases as described by the Ideal Gas Law and an understanding of these properties as given by the postulates and conclusions of the Kinetic Molecular Theory . We assume that we have developed a dynamic model of phase equilibrium in terms of competing rates. We willalso assume an understanding of the bonding, structure, and properties of individual molecules.

Goals

In performing stoichiometric calculations, we assume that we can calculate the amount of product of a reactionfrom the amount of the reactants we start with. For example, if we burn methane gas, C H 4 ( g ) , in excess oxygen, the reaction

C H 4 ( g ) + 2 O 2 ( g ) C O 2 ( g ) + 2 H 2 O ( g )

occurs, and the number of moles of C O 2 ( g ) produced is assumed to equal the number of moles of C H 4 ( g ) we start with.

From our study of phase transitions we have learned the concept of equilibrium. We observed that, in thetransition from one phase to another for a substance, under certain conditions both phases are found to coexist, and we refer to thisas phase equilibrium. It should not surprise us that these same concepts of equilibrium apply to chemical reactions as well. In the reaction , therefore, we should examine whether the reaction actually producesexactly one mole of C O 2 for every mole of C H 4 we start with or whether we wind up with an equilibrium mixture containing both C O 2 and C H 4 . We will find that different reactions provide us with varyinganswers. In many cases, virtually all reactants are consumed, producing the stoichiometric amount of product. However, in manyother cases, substantial amounts of reactant are still present when the reaction achieves equilibrium, and in other cases, almost noproduct is produced at equilibrium. Our goal will be to understand, describe and predict the reaction equilibrium.

An important corollary to this goal is to attempt to control the equilibrium. We will find that varying theconditions under which the reaction occurs can vary the amounts of reactants and products present at equilibrium. We will develop ageneral principle for predicting how the reaction conditions affect the amount of product produced at equilibrium.

Observation 1: reaction equilibrium

We begin by analyzing a significant industrial chemical process, the synthesis of ammonia gas, N H 3 , from nitrogen and hydrogen:

N 2 ( g ) + 3 H 2 ( g ) 2 N H 3 ( g )

If we start with 1 mole of N 2 and 3 moles of H 2 , the balanced equation predicts that we will produce 2 moles of N H 3 . In fact, if we carry out this reaction starting with thesequantities of nitrogen and hydrogen at 298K in a 100.0L reaction vessel, we observe that the number of moles of N H 3 produced is 1.91 mol. This "yield" is less than predicted by the balanced equation, but the difference is not dueto a limiting reagent factor. Recall that, in stoichiometry, the limiting reagent is the one that is present in less than the ratioof moles given by the balanced equation. In this case, neither N 2 nor H 2 is limiting because they are present initially in a 1:3 ratio, exactly matching the stoichiometry. Note also that this seemingdeficit in the yield is not due to any experimental error or imperfection, nor is it due to poor measurements or preparation.Rather, the observation that, at 298K, 1.91 moles rather than 2 moles are produced is completely reproducible: every measurement ofthis reaction at this temperature in this volume starting with 1 mole of N 2 and 3 moles of H 2 gives this result. We conclude that the reaction achieves reaction equilibrium in which all three gases are present in the gas mixture. We can determine the amountsof each gas at equilibrium from the stoichiometry of the reaction. When n N H 3 1.91 mol are created, the number of moles of N 2 remaining at equilibrium is n N 2 0.045 mol and n H 2 0.135 mol .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, General chemistry ii. OpenStax CNX. Mar 25, 2005 Download for free at http://cnx.org/content/col10262/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'General chemistry ii' conversation and receive update notifications?

Ask