<< Chapter < Page Chapter >> Page >

If such a galvanometer has a 2 5- Ω size 12{2"5-" %OMEGA } {} resistance, then a voltage of only V = IR = 50 μA 25 Ω = 1 . 25 mV size 12{V= ital "IR"= left ("50" μA right ) left ("25" %OMEGA right )=1 "." "25"" mV"} {} produces a full-scale reading. By connecting resistors to this galvanometer in different ways, you can use it as either a voltmeter or ammeter that can measure a broad range of voltages or currents.

Galvanometer as voltmeter

[link] shows how a galvanometer can be used as a voltmeter by connecting it in series with a large resistance, R . The value of the resistance R size 12{R} {} is determined by the maximum voltage to be measured. Suppose you want 10 V to produce a full-scale deflection of a voltmeter containing a 2 5-Ω size 12{2"5-" %OMEGA } {} galvanometer with a 50-μA sensitivity. Then 10 V applied to the meter must produce a current of 50 μA size 12{"50" μA} {} . The total resistance must be

R tot = R + r = V I = 10 V 50 μA = 200 k Ω, or size 12{R rSub { size 8{"tot"} } =R+r= { {V} over {I} } = { {"10"" V"} over {"50" μA} } ="200"" k" %OMEGA } {}
R = R tot r = 200 kΩ 25 Ω 200 k Ω . size 12{R=R rSub { size 8{"tot"} } -r="200"k %OMEGA -"25" %OMEGA »"200"" k" %OMEGA } {}

( R size 12{R} {} is so large that the galvanometer resistance, r , is nearly negligible.) Note that 5 V applied to this voltmeter produces a half-scale deflection by producing a 2 5-μA size 12{2"5-"μA} {} current through the meter, and so the voltmeter’s reading is proportional to voltage as desired.

This voltmeter would not be useful for voltages less than about half a volt, because the meter deflection would be small and difficult to read accurately. For other voltage ranges, other resistances are placed in series with the galvanometer. Many meters have a choice of scales. That choice involves switching an appropriate resistance into series with the galvanometer.

The drawing shows a voltmeter, which is a circuit with a large resistance in series with a galvanometer, along with its internal resistance.
A large resistance R placed in series with a galvanometer G produces a voltmeter, the full-scale deflection of which depends on the choice of R size 12{R} {} . The larger the voltage to be measured, the larger R size 12{R} {} must be. (Note that r represents the internal resistance of the galvanometer.)

Galvanometer as ammeter

The same galvanometer can also be made into an ammeter by placing it in parallel with a small resistance R size 12{R} {} , often called the shunt resistance    , as shown in [link] . Since the shunt resistance is small, most of the current passes through it, allowing an ammeter to measure currents much greater than those producing a full-scale deflection of the galvanometer.

Suppose, for example, an ammeter is needed that gives a full-scale deflection for 1.0 A, and contains the same 2 5- Ω size 12{2"5-" %OMEGA } {} galvanometer with its 50-μA size 12{"50"-μA} {} sensitivity. Since R size 12{R} {} and r size 12{r} {} are in parallel, the voltage across them is the same.

These IR size 12{ ital "IR"} {} drops are IR = I G r size 12{ ital "IR"=I rSub { size 8{G} } r} {} so that IR = I G I = R r size 12{ ital "IR"= { {I rSub { size 8{G} } } over {I} } = { {R} over {r} } } {} . Solving for R size 12{R} {} , and noting that I G size 12{I rSub { size 8{G} } } {} is 50 μA size 12{"50" μA} {} and I size 12{I} {} is 0.999950 A, we have

R = r I G I = ( 25 Ω ) 50 μA 0 . 999950 A = 1 . 25 × 10 3 Ω . size 12{R=r { {I rSub { size 8{G} } } over {I} } = \( "25" %OMEGA \) { {"50" mA} over {0 "." "999950 A"} } =1 "." "25"´"10" rSup { size 8{-3} } %OMEGA } {}
A resistance R is placed in parallel with a galvanometer G having an internal resistance r to produce an ammeter.
A small shunt resistance R size 12{R} {} placed in parallel with a galvanometer G produces an ammeter, the full-scale deflection of which depends on the choice of R size 12{R} {} . The larger the current to be measured, the smaller R size 12{R} {} must be. Most of the current ( I ) flowing through the meter is shunted through R size 12{R} {} to protect the galvanometer. (Note that r represents the internal resistance of the galvanometer.) Ammeters may also have multiple scales for greater flexibility in application. The various scales are achieved by switching various shunt resistances in parallel with the galvanometer—the greater the maximum current to be measured, the smaller the shunt resistance must be.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask