<< Chapter < Page Chapter >> Page >

Fourier series coefficients from the dft

If the signal to be analyzed is periodic, the Fourier integral in [link] does not converge to a function (it may to a distribution). This function is usually expanded in a Fourier series to define itsspectrum or a frequency description. We will sample this function and show how to approximately calculate the Fourier series coefficients usingthe DFT of the samples.

Consider a periodic signal f ˜ ( t ) = f ˜ ( t + P ) with N samples taken every T seconds to give T n ˜ ( t ) for integer n such that N T = P . The Fourier series expansion of f ˜ ( t ) is

f ˜ ( t ) = k = - C ( k ) e 2 π k t / P

with the coefficients given in [link] . Samples of this are

f ˜ ( T n ) = k = - C ( k ) e 2 π k T n / P = k = - C ( k ) e 2 π k n / N

which is broken into a sum of sums as

f ˜ ( T n ) = - k = 0 N - 1 C ( k + N ) e 2 π ( k + N ) n / N = k = 0 N - 1 - C ( k + N ) e 2 π k n / N .

But the inverse DFT is of the form

f ˜ ( T n ) = 1 N k = 0 N - 1 F ( k ) e j 2 π n k / N

therefore,

DFT { f ˜ ( T n ) } = N C ( k + N ) = N C p ( k ) .

and we have our result of the relation of the Fourier coefficients to the DFT of a sampled periodic signal. Once again aliasing is a result ofsampling.

Shannon's sampling theorem

Given a signal modeled as a real (sometimes complex) valued function of a real variable (usually time here), we define a bandlimited function as anyfunction whose Fourier transform or spectrum is zero outside of some finite domain

| F ( ω ) | = 0 for | ω | > W

for some W < . The sampling theorem states that if f ( t ) is sampled

f s ( n ) = f ( T n )

such that T < 2 π / W , then f ( t ) can be exactly reconstructed (interpolated) from its samples f s ( n ) using

f ( t ) = n = - f s ( n ) sin ( π t / T - π n ) π t / T - π n .

This is more compactly written by defining the sinc function as

sinc ( x ) = sin ( x ) x

which gives the sampling formula Equation 53 from Least Squared Error Design of FIR Filters the form

f ( t ) = n f s ( n ) sinc ( π t / T - π n ) .

The derivation of Equation 53 from Least Squared Error Design of FIR Filters or Equation 56 from Least Squared Error Design of FIR Filters can be done a number of ways. One of the quickest uses infinite sequences of delta functions and will bedeveloped later in these notes. We will use a more direct method now to better see the assumptions and restrictions.

We first note that if f ( t ) is bandlimited and if T < 2 π / W then there is no overlap or aliasing in F p ( ω ) . In other words, we can write [link] as

f ( t ) = 1 2 π - F ( ω ) e j ω t d ω = 1 2 π - π / T π / T F p ( ω ) e j ω t d ω

but

F p ( ω ) = F ( ω + 2 π / T ) = T n f ( T n ) e - j ω T n

therefore,

f ( t ) = 1 2 π - π / T π / T T n f ( T n ) e - j ω T n e j ω t d ω
= T 2 π n f ( T n ) - π / T π / T e j ( t - T n ) ω d ω
= n f ( T n ) sin ( π T t - π n ) π T t - π n

which is the sampling theorem. An alternate derivation uses a rectangle function and its Fourier transform, the sinc function, together withconvolution and multiplication. A still shorter derivation uses strings of delta function with convolutions and multiplications. This isdiscussed later in these notes.

There are several things to notice about this very important result. First, note that although f ( t ) is defined for all t from only its samples, it does require an infinite number of them to exactly calculate f ( t ) . Also note that this sum can be thought of as an expansion of f ( t ) in terms of an orthogonal set of basis function which are the sinc functions. One can show that the coefficients in this expansion of f ( t ) calculated by an inner product are simply samples of f ( t ) . In other words, the sinc functions span the space of bandlimited functions with avery simple calculation of the expansion coefficients. One can ask the question of what happens if a signal is “under sampled". What happens ifthe reconstruction formula in Equation 12 from Continuous Time Signals is used when there is aliasing and Equation 57 from Least Squarred Error Design of FIR Filters is not true. We will not pursue that just now. In any case, there are many variations and generalizations of this result thatare quite interesting and useful.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Digital signal processing and digital filter design (draft). OpenStax CNX. Nov 17, 2012 Download for free at http://cnx.org/content/col10598/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Digital signal processing and digital filter design (draft)' conversation and receive update notifications?

Ask