# 14.7 Viscosity and turbulence  (Page 4/14)

 Page 4 / 14

## Using flow rate: air conditioning systems

An air conditioning system is being designed to supply air at a gauge pressure of 0.054 Pa at a temperature of $20\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}.$ The air is sent through an insulated, round conduit with a diameter of 18.00 cm. The conduit is 20-meters long and is open to a room at atmospheric pressure 101.30 kPa. The room has a length of 12 meters, a width of 6 meters, and a height of 3 meters. (a) What is the volume flow rate through the pipe, assuming laminar flow? (b) Estimate the length of time to completely replace the air in the room. (c) The builders decide to save money by using a conduit with a diameter of 9.00 cm. What is the new flow rate?

## Strategy

Assuming laminar flow, Poiseuille’s law states that

$Q=\frac{\left({p}_{2}-{p}_{1}\right)\pi {r}^{4}}{8\eta l}=\frac{dV}{dt}.$

We need to compare the artery radius before and after the flow rate reduction. Note that we are given the diameter of the conduit, so we must divide by two to get the radius.

## Solution

1. Assuming a constant pressure difference and using the viscosity $\eta =0.0181\phantom{\rule{0.2em}{0ex}}\text{mPa}\cdot \text{s}$ ,
$Q=\frac{\left(0.054\phantom{\rule{0.2em}{0ex}}\text{Pa}\right)\left(3.14\right){\left(0.09\phantom{\rule{0.2em}{0ex}}\text{m}\right)}^{4}}{8\left(0.0181\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-3}\phantom{\rule{0.2em}{0ex}}\text{Pa}\cdot \text{s}\right)\left(20\phantom{\rule{0.2em}{0ex}}\text{m}\right)}=3.84\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-3}\phantom{\rule{0.2em}{0ex}}\frac{{\text{m}}^{3}}{\text{s}}.$
2. Assuming constant flow $Q=\frac{dV}{dt}\approx \frac{\text{Δ}V}{\text{Δ}t}$
$\text{Δ}t=\frac{\text{Δ}V}{Q}=\frac{\left(12\phantom{\rule{0.2em}{0ex}}\text{m}\right)\left(6\phantom{\rule{0.2em}{0ex}}\text{m}\right)\left(3\phantom{\rule{0.2em}{0ex}}\text{m}\right)}{3.84\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-3}\phantom{\rule{0.2em}{0ex}}\frac{{\text{m}}^{3}}{\text{s}}}=5.63\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{4}\phantom{\rule{0.2em}{0ex}}\text{s}=15.63\phantom{\rule{0.2em}{0ex}}\text{hr}.$
3. Using laminar flow, Poiseuille’s law yields
$Q=\frac{\left(0.054\phantom{\rule{0.2em}{0ex}}\text{Pa}\right)\left(3.14\right){\left(0.045\phantom{\rule{0.2em}{0ex}}\text{m}\right)}^{4}}{8\left(0.0181\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-3}\phantom{\rule{0.2em}{0ex}}\text{Pa}\cdot \text{s}\right)\left(20\phantom{\rule{0.2em}{0ex}}\text{m}\right)}=2.40\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-4}\phantom{\rule{0.2em}{0ex}}\frac{{\text{m}}^{3}}{\text{s}}.$

Thus, the radius of the conduit decreases by half reduces the flow rate to 6.25% of the original value.

## Significance

In general, assuming laminar flow, decreasing the radius has a more dramatic effect than changing the length. If the length is increased and all other variables remain constant, the flow rate is decreased:

$\begin{array}{ccc}\hfill \frac{{Q}_{A}}{{Q}_{B}}& =\hfill & \frac{\frac{\left({p}_{2}-{p}_{1}\right)\pi {r}_{A}^{4}}{8\eta {l}_{A}}}{\frac{\left({p}_{2}-{p}_{1}\right)\pi {r}_{B}^{4}}{8\eta {l}_{B}}}=\frac{{l}_{B}}{{l}_{A}}\hfill \\ \hfill {Q}_{B}& =\hfill & \frac{{l}_{A}}{{l}_{B}}{Q}_{A}.\hfill \end{array}$

Doubling the length cuts the flow rate to one-half the original flow rate.

If the radius is decreased and all other variables remain constant, the volume flow rate decreases by a much larger factor.

$\begin{array}{ccc}\hfill \frac{{Q}_{A}}{{Q}_{B}}& =\hfill & \frac{\frac{\left({p}_{2}-{p}_{1}\right)\pi {r}_{A}^{4}}{8\eta {l}_{A}}}{\frac{\left({p}_{2}-{p}_{1}\right)\pi {r}_{B}^{4}}{8\eta {l}_{B}}}={\left(\frac{{r}_{A}}{{r}_{B}}\right)}^{4}\hfill \\ \hfill {Q}_{B}& =\hfill & {\left(\frac{{r}_{B}}{{r}_{A}}\right)}^{4}{Q}_{A}\hfill \end{array}$

Cutting the radius in half decreases the flow rate to one-sixteenth the original flow rate.

## Flow and resistance as causes of pressure drops

Water pressure in homes is sometimes lower than normal during times of heavy use, such as hot summer days. The drop in pressure occurs in the water main before it reaches individual homes. Let us consider flow through the water main as illustrated in [link] . We can understand why the pressure ${p}_{1}$ to the home drops during times of heavy use by rearranging the equation for flow rate:

$\begin{array}{ccc}\hfill Q& =\hfill & \frac{{p}_{2}-{p}_{1}}{R}\hfill \\ \hfill {p}_{2}–{p}_{1}& =\hfill & RQ.\hfill \end{array}$

In this case, ${p}_{2}$ is the pressure at the water works and R is the resistance of the water main. During times of heavy use, the flow rate Q is large. This means that ${p}_{2}-{p}_{1}$ must also be large. Thus ${p}_{1}$ must decrease. It is correct to think of flow and resistance as causing the pressure to drop from ${p}_{2}$ to ${p}_{1}$ . The equation ${p}_{2}-{p}_{1}=RQ$ is valid for both laminar and turbulent flows.

A force F is needed to break a copper wire having radius R. The force needed to break a copper wire of radius 2R will be
2F
Jacob
The difference between vector and scaler quantity
vector has both magnitude & direction but scalar has only magnitude
Manash
my marunong ba dto mag prove ng geometry
ron
how do I find resultant of four forces at a point
Inusah
use the socatoa rule
kingsley
draw force diagram, then work out the direction of force.
Rongfang
In a closed system of forces... Summation of forces in any direction or plane is zero... Resolve if there is a need to then add forces in a particular plane or direction.. Say the x direction... Equate it tk zero
Jacob
define moment of inertia
what is Euler s theorem
what is thermocouple?
joining of two wire of different material forming two junctions. If one is hot and another is cold the it will produce emf...
joining of two metal of different materials to form a junction in one is hot & another is cold
Manash
define dimensional analysis
mathematical derivation?
Hira
explain what Newtonian mechanics is.
a system of mechanics based of Newton laws motion this is easy difenation of mean...
Arzoodan
what is the meaning of single term,mechanics?
jyotirmayee
mechanics is the science related to the behavior of physical bodies when some external force is applied to them
Lalita
SO ASK What is Newtonian mechanics in physics? Newtonian physics, also calledNewtonian or classical mechanics, is the description of mechanical events—those that involve forces acting on matter—using the laws of motion and gravitation formulated in the late seventeenth century by English physicist
Suleiman
can any one send me the best reference book for physics?
Prema
concept of physics by HC verma, Fundamentals of Physics, university of physics
tq u.
Prema
these are the best physics books one can fond both theory and applications.
can any one suggest best book for maths with lot of Tricks?
Vivek
what is the water height in barometer?
SUNEELL
13.5*76 cm. because Mercury is 13.5 times dense than Mercury
LOVE
water is 13.5 times dense than the Mercury
LOVE
plz tell me frnds the best reference book for physics along with the names of authors.
Prema
i recomended the reference book for physics from library University of Dublin or library Trinity college
Arzoodan
A little help here... . 1. Newton's laws of Motion, are they applicable to motions of all speeds? 2.state the speeds which are applicable to Newtons laws of Motion
Derek
mechanics which follows Newtons law
Manash
The definition of axial and polar vector .
Arpita
polar vector which have a starting point or pt. of applications is,force,displacement
jyotirmayee
axial vector represent rotational effect and act along the axis of rotation b
jyotirmayee
explain the rule of free body diagram
The polar coordinates of a point are 4π/3 and 5.50m. What are its Cartesian coordinates?
application of elasticity
good
Anwar
a boy move with a velocity of 5m/s in 4s. What is the distance covered by the boy?
What is the time required for the sun to reach the earth?
anthony
24th hr's, your question is amazing joke 😂
Arzoodan
velocity 20 m, s
Ahmed
the sun shines always and the earth rotates so the question should specify a place on earth and that will be 24hrs
Opoku
20m
Gabriel
good nice work
Anwar
20m
Evelyn
why 20?.
Arzoodan
v =distance/time so make distance the subject from the equation
Evelyn
20m
Olaide
exatly
Arzoodan
what is differemce between principles and laws
plz
Anwar
how can a 50W light bulb use more energy than a 1000W oven?
That depends on how much time we use them
Phrangsngi
It states that, " If two vectors are represented in magnitude and direction by the two sides of a triangle, then their resultant is represented in magnitude and direction by the third side of the triangl " .
Nabin
thanks yaar
Pawan
And it's formula
Pawan
Manash
plank constant is what
plank constant is a phisical constant that the central quantum
Arzoodan
links energy of a photon to it's wave length