<< Chapter < Page Chapter >> Page >

Principles of rocketry

Model rocket flight involves a cocktail of mathematics and physics. The very best model rockets are built on careful calculations from the principles of physics, aerodynamics, thermodynamics, and gas dynamics. For an optimal flight, the builder must consider all of these principles. Physics is used to predict the flight patterns and behavior of a rocket. Aerodynamics must be taken into account to ensure stable flight of the rocket, and to provide for the smoothest and highest flight possible. Finally, thermodynamics and gas dynamics are incorporated into the ignition and motor of the rocket, which actually propel the rocket. In our project, we incorporate the physics of the rocket in order to use digital signal processing to electronically detect rocket apogee. Apogee is the highest point in the rocket's flight and is the best time to deploy a parachute.

Rocket build

As seen in [link] , model rockets consist of a number of parts. At the very tip of the rocket is the nosecone, the streamline shaped provides the lowest drag in the air (this is to make the rocket as aerodynamic as possible). The shock cord holds together the parts of the rocket after parachute ejection (the rocket physically splits in half and ejects the parachute, which allows the parts to float safely to the ground). The parachute is one of several recovery methods, most often used. For our purposes, it is both applicable to our larger rocket as well as cost efficient. The launch lug, guides the rocket along the launch rod – part of the tripod-like stand that the rocket is launched from – until the fins start working. The body tube is where devices, such as barometers, altimeters, accelerometers, and other electronics can be situated. Flame-proof recovery wadding is padded in between the area where the parachute and the motor are in order to protect the parachute and other devices from the motors hot ejection gases. The fins of the rocket, located externally on the body tube, provide aerodynamic stability. The motor, finally, accelerates the rocket upwards until it burns out.

Rocket build

diagram of typical model rocket
Rocket Model Diagram. From: http://www.manitobarocketry.org/AboutModelRocketry.html
Model rockets are usually categorized according to the motors they use. Motor classes are determined by the motor impulse, or the area under the thrust-time curve. The more powerful the motor, the further along the alphabet the class is. Motors start at 1/4A class and increase, to 1/2A, A, B, and so on. “Model Rockets” are officially classed as rockets with “G” motors or under. Rockets which use larger motors are typically called "high-powered rockets." (The rocket which this study centers around flew on an "I” motor).The rocket for this study incorporated an Arduino board paired with a barometer and accelerometer as its payload in order to take data for DSP processing.

Flight path and apogee

The flight path of a rocket has several main components. Firstly, we have ignition and liftoff, which are parts of the launch phase. The thrust phase, or the powered flight phase, is the phase in which the motor or engine is burning in order to push the rocket into the air. It is accelerating at this phase. Part three is the burnout, the exact moment in which the engine’s power has been completely expended and the rocket is no longer providing its own thrust. Right after the burnout, the model rocket ascends into the coasting phase, in which it starts slowing down from its top speed. Gravitational pull works against the rocket, and so it decelerates until it reaches Apogee. It in [link] as “Ejection,” because, ideally, this is where parachute ejection should occur. In model rockets, apogee is the highest point of a rocket’s flight. On a parabolic flight pattern, this is the point where the rocket reaches its maximum height, and where velocity equals zero. Finally, the rocket reaches its recovery phase, where the parachute provides air resistance to counteract the force of gravity pulling on the rocket. It then drifts to the ground, where the model rocket can be recovered and recorded data logged.

Rocket flight path

rocket flight path diagram
Model Rocket Flight Path Diagram. From: http://my.execpc.com/~culp/space/flight.html

One common reason for using electronic deployment is for so called "dual-deployment". To allow rockets to fly higher with less drift, rockets using "dual-deployment" deploy a small "drogue" parachute at apogee which only slows the rocket down a little bit. Closer to the ground the main parachute opens and slows the rocket down to a speed which is safe to land at.

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Digital detection of rocket apogee. OpenStax CNX. Dec 18, 2013 Download for free at http://cnx.org/content/col11599/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Digital detection of rocket apogee' conversation and receive update notifications?