# 10.1 The trig functions and 2-d problems  (Page 2/2)

 Page 2 / 2
 ${0}^{\circ }$ ${30}^{\circ }$ ${45}^{\circ }$ ${60}^{\circ }$ ${90}^{\circ }$ ${180}^{\circ }$ $cos\theta$ 1 $\frac{\sqrt{3}}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ 0 $-1$ $sin\theta$ 0 $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$ 1 0 $tan\theta$ 0 $\frac{1}{\sqrt{3}}$ 1 $\sqrt{3}$ $-$ 0

These values are useful when asked to solve a problem involving trig functions without using a calculator.

Each of the trigonometric functions has a reciprocal that has a special name. The three reciprocals are cosecant (or cosec), secant (or sec) and cotangent (or cot). These reciprocals are given below:

$\begin{array}{ccc}cosec\theta & =& \frac{1}{sin\theta }\\ sec\theta & =& \frac{1}{cos\theta }\\ cot\theta & =& \frac{1}{tan\theta }\end{array}$

We can also define these reciprocals for any right angled triangle:

$\begin{array}{ccc}\hfill cosec\theta & =& \frac{\mathrm{hypotenuse}}{\mathrm{opposite}}\hfill \\ \hfill sec\theta & =& \frac{\mathrm{hypotenuse}}{\mathrm{adjacent}}\hfill \\ \hfill cot\theta & =& \frac{\mathrm{adjacent}}{\mathrm{opposite}}\hfill \end{array}$

Find the length of x in the following triangle.

1. In this case you have an angle ( ${50}^{\circ }$ ), the opposite side and the hypotenuse.

So you should use $sin$

$sin{50}^{\circ }=\frac{x}{100}$
2. $⇒x=100×sin{50}^{\circ }$
3. Use the sin button on your calculator

$⇒x=76.6\mathrm{m}$

Find the value of $\theta$ in the following triangle.

1. In this case you have the opposite side and the hypotenuse to the angle $\theta$ .

So you should use $tan$

$tan\theta =\frac{50}{100}$
2. $tan\theta =0.5$
3. Since you are finding the angle ,

use ${tan}^{-1}$ on your calculator

Don't forget to set your calculator to `deg' mode!

$\theta =26.{6}^{\circ }$

In the previous example we used ${\mathrm{tan}}^{-1}$ . This is simply the inverse of the tan function. Sin and cos also have inverses. All this means is that we want to find the angle that makes the expression true and so we must move the tan (or sin or cos) to the other side of the equals sign and leave the angle where it is. Sometimes the reciprocal trigonometric functions are also referred to as the 'inverse trigonometric functions'. You should note, however that ${\mathrm{tan}}^{-1}$ and $\mathrm{cot}$ are definitely NOT the same thing.

The following videos provide a summary of what you have learnt so far.

## Finding lengths

Find the length of the sides marked with letters. Give answers correct to 2 decimal places.

## Two-dimensional problems

We can use the trig functions to solve problems in two dimensions that involve right angled triangles. For example if you are given a quadrilateral and asked to find the one of the angles, you can construct a right angled triangle and use the trig functions to solve for the angle. This will become clearer after working through the following example.

Let ABCD be a trapezium with $\mathrm{AB}=4\phantom{\rule{1pt}{0ex}}\mathrm{cm}$ , $\mathrm{CD}=6\phantom{\rule{1pt}{0ex}}\mathrm{cm}$ , $\mathrm{BC}=5\phantom{\rule{1pt}{0ex}}\mathrm{cm}$ and $\mathrm{AD}=5\phantom{\rule{1pt}{0ex}}\mathrm{cm}$ . Point E on diagonal AC divides the diagonal such that $\mathrm{AE}=3\phantom{\rule{1pt}{0ex}}\mathrm{cm}$ . Find $A\stackrel{^}{B}C$ .

1. We draw a diagram and construct right angled triangles to help us visualize the problem.
2. We will use triangle ABE and triangle BEC to get the two angles, and then we will add these two angles together to find the angle we want.
3. We use sin for both triangles since we have the hypotenuse and the opposite side.
4. In triangle ABE we find:
$\begin{array}{ccc}\hfill sin\left(A\stackrel{^}{B}E\right)& =& \frac{\mathrm{opp}}{\mathrm{hyp}}\hfill \\ \hfill sin\left(A\stackrel{^}{B}E\right)& =& \frac{3}{4}\hfill \\ A\stackrel{^}{B}E& =& {sin}^{-1}\left(\frac{3}{4}\right)\hfill \\ A\stackrel{^}{B}E& =& {48,59}^{\circ }\hfill \end{array}$
We use the theorem of Pythagoras to find $\mathrm{EC}=4,4\phantom{\rule{1pt}{0ex}}\mathrm{cm}$ . In triangle BEC we find:
$\begin{array}{ccc}\hfill sin\left(C\stackrel{^}{B}E\right)& =& \frac{\mathrm{opp}}{\mathrm{hyp}}\hfill \\ \hfill sin\left(C\stackrel{^}{B}E\right)& =& \frac{4,4}{5}\hfill \\ A\stackrel{^}{B}E& =& {sin}^{-1}\left(\frac{4,4}{5}\right)\hfill \\ C\stackrel{^}{B}E& =& {61,64}^{\circ }\hfill \end{array}$
5. We add the two angles together to get: ${48,59}^{\circ }+{61,64}^{\circ }={110,23}^{\circ }$

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!