# 6.1 Superposition of pulses

 Page 1 / 1

## Superposition of pulses

Two or more pulses can pass through the same medium at that same time in the same place. When they do they interact with each other to form a different disturbance at that point. The resulting pulse is obtained by using the principle of superposition . The principle of superposition states that the effect of the different pulses is the sum of their individual effects. After pulses pass through each other, each pulse continues along its original direction of travel, and their original amplitudes remain unchanged.

Constructive interference takes place when two pulses meet each other to create a larger pulse. The amplitude of the resulting pulse is the sum of the amplitudes of the two initial pulses. This is shown in [link] .

Constructive interference
Constructive interference is when two pulses meet, resulting in a bigger pulse.

Destructive interference takes place when two pulses meet and cancel each other. The amplitude of the resulting pulse is the sum of the amplitudes of the two initial pulses, but the one amplitude will be a negative number. This is shown in [link] . In general, amplitudes of individual pulses add together to give the amplitude of the resultant pulse.

Destructive interference
Destructive interference is when two pulses meet, resulting in a smaller pulse.

The two pulses shown below approach each other at $1\phantom{\rule{2pt}{0ex}}\mathrm{m}·\mathrm{s}{}^{-1}$ . Draw what the waveform would look like after $1\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $2\phantom{\rule{2pt}{0ex}}\mathrm{s}$ and $5\phantom{\rule{2pt}{0ex}}\mathrm{s}$ .

1. After $1\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , pulse A has moved $1\phantom{\rule{2pt}{0ex}}\mathrm{m}$ to the right and pulse B has moved $1\phantom{\rule{2pt}{0ex}}\mathrm{m}$ to the left.

2. After $1\phantom{\rule{2pt}{0ex}}\mathrm{s}$ more, pulse A has moved $1\phantom{\rule{2pt}{0ex}}\mathrm{m}$ to the right and pulse B has moved $1\phantom{\rule{2pt}{0ex}}\mathrm{m}$ to the left.

3. After $5\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , pulse A has moved $5\phantom{\rule{2pt}{0ex}}\mathrm{m}$ to the right and pulse B has moved $5\phantom{\rule{2pt}{0ex}}\mathrm{m}$ to the left.

The idea of superposition is one that occurs often in physics. You will see much, much more of superposition!

## Aim

To demonstrate constructive and destructive interference

## Apparatus

Ripple tank apparatus

## Method

1. Set up the ripple tank
2. Produce a single pulse and observe what happens
3. Produce two pulses simultaneously and observe what happens
4. Produce two pulses at slightly different times and observe what happens

## Results and conclusion

You should observe that when you produce two pulses simultaneously you see them interfere constructively and when you produce two pulses at slightly different times you see them interfere destructively.

## Problems involving superposition of pulses

1. For the following pulse, draw the resulting wave forms after $1\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $2\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $3\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $4\phantom{\rule{2pt}{0ex}}\mathrm{s}$ and $5\phantom{\rule{2pt}{0ex}}\mathrm{s}$ . Each pulse is travelling at $1\phantom{\rule{2pt}{0ex}}\mathrm{m}·\mathrm{s}{}^{-1}$ . Each block represents $1\phantom{\rule{2pt}{0ex}}\mathrm{m}$ . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
2. For the following pulse, draw the resulting wave forms after $1\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $2\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $3\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $4\phantom{\rule{2pt}{0ex}}\mathrm{s}$ and $5\phantom{\rule{2pt}{0ex}}\mathrm{s}$ . Each pulse is travelling at $1\phantom{\rule{2pt}{0ex}}\mathrm{m}·\mathrm{s}{}^{-1}$ . Each block represents $1\phantom{\rule{2pt}{0ex}}\mathrm{m}$ . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
3. For the following pulse, draw the resulting wave forms after $1\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $2\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $3\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $4\phantom{\rule{2pt}{0ex}}\mathrm{s}$ and $5\phantom{\rule{2pt}{0ex}}\mathrm{s}$ . Each pulse is travelling at $1\phantom{\rule{2pt}{0ex}}\mathrm{m}·\mathrm{s}{}^{-1}$ . Each block represents $1\phantom{\rule{2pt}{0ex}}\mathrm{m}$ . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
4. For the following pulse, draw the resulting wave forms after $1\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $2\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $3\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $4\phantom{\rule{2pt}{0ex}}\mathrm{s}$ and $5\phantom{\rule{2pt}{0ex}}\mathrm{s}$ . Each pulse is travelling at $1\phantom{\rule{2pt}{0ex}}\mathrm{m}·\mathrm{s}{}^{-1}$ . Each block represents $1\phantom{\rule{2pt}{0ex}}\mathrm{m}$ . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
5. For the following pulse, draw the resulting wave forms after $1\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $2\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $3\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $4\phantom{\rule{2pt}{0ex}}\mathrm{s}$ and $5\phantom{\rule{2pt}{0ex}}\mathrm{s}$ . Each pulse is travelling at $1\phantom{\rule{2pt}{0ex}}\mathrm{m}·\mathrm{s}{}^{-1}$ . Each block represents $1\phantom{\rule{2pt}{0ex}}\mathrm{m}$ . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
6. For the following pulse, draw the resulting wave forms after $1\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $2\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $3\phantom{\rule{2pt}{0ex}}\mathrm{s}$ , $4\phantom{\rule{2pt}{0ex}}\mathrm{s}$ and $5\phantom{\rule{2pt}{0ex}}\mathrm{s}$ . Each pulse is travelling at $1\phantom{\rule{2pt}{0ex}}\mathrm{m}·\mathrm{s}{}^{-1}$ . Each block represents $1\phantom{\rule{2pt}{0ex}}\mathrm{m}$ . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
7. What is superposition of waves?
8. What is constructive interference?
9. What is destructive interference?

The following presentation provides a summary of the work covered in this chapter. Although the presentation is titled waves, the presentation covers pulses only.

## Summary

• A medium is the substance or material in which a wave will move
• A pulse is a single disturbance that moves through a medium
• The amplitude of a pules is a measurement of how far the medium is displaced from rest
• Pulse speed is the distance a pulse travels per unit time
• Constructive interference is when two pulses meet and result in a bigger pulse
• Destructive interference is when two pulses meet and and result in a smaller pulse
• We can draw graphs to show the motion of a particle in the medium or to show the motion of a pulse through the medium
• When a pulse moves from a thin rope to a thick rope, the speed and pulse length decrease. The pulse will be reflected and inverted in the thin rope. The reflected pulse has the same length and speed, but a different amplitude
• When a pulse moves from a thick rope to a thin rope, the speed and pulse length increase. The pulse will be reflected in the thick rope. The reflected pulse has the same length and speed, but a different amplitude
• A pulse reaching a free end will be reflected but not inverted. A pulse reaching a fixed end will be reflected and inverted

## Exercises - transverse pulses

1. A heavy rope is flicked upwards, creating a single pulse in the rope. Make a drawing of the rope and indicate the following in your drawing:
1. The direction of motion of the pulse
2. Amplitude
3. Pulse length
4. Position of rest
2. A pulse has a speed of $2,5\phantom{\rule{2pt}{0ex}}\mathrm{m}·\mathrm{s}{}^{-1}$ . How far will it have travelled in $6\phantom{\rule{2pt}{0ex}}\mathrm{s}$ ?
3. A pulse covers a distance of $75\phantom{\rule{2pt}{0ex}}\mathrm{cm}$ in $2,5\phantom{\rule{2pt}{0ex}}\mathrm{s}$ . What is the speed of the pulse?
4. How long does it take a pulse to cover a distance of $200\phantom{\rule{2pt}{0ex}}\mathrm{mm}$ if its speed is $4\phantom{\rule{2pt}{0ex}}\mathrm{m}·\mathrm{s}{}^{-1}$ ?
5. The following position-time graph for a pulse in a slinky spring is given. Draw an accurate sketch graph of the velocity of the pulse against time.
6. The following velocity-time graph for a particle in a medium is given. Draw an accurate sketch graph of the position of the particle vs. time.
7. Describe what happens to a pulse in a slinky spring when:
1. the slinky spring is tied to a wall.
2. the slinky spring is loose, i.e. not tied to a wall.
8. The following diagrams each show two approaching pulses. Redraw the diagrams to show what type of interference takes place, and label the type of interference.
9. Two pulses, A and B, of identical shape and amplitude are simultaneously generated in two identical wires of equal mass and length. Wire A is, however, pulled tighter than wire B. Which pulse will arrive at the other end first, or will they both arrive at the same time?

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
The fundamental frequency of a sonometer wire streached by a load of relative density 's'are n¹ and n² when the load is in air and completly immersed in water respectively then the lation n²/na is
Properties of longitudinal waves