<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. This chapter contains many examples of arithmetic techniques that are used directly or indirectly in algebra. Since the chapter is intended as a review, the problem-solving techniques are presented without being developed. Therefore, no work space is provided, nor does the chapter contain all of the pedagogical features of the text. As a review, this chapter can be assigned at the discretion of the instructor and can also be a valuable reference tool for the student.

Overview

  • Prime And Composite Numbers
  • The Fundamental Principle Of Arithmetic
  • The Prime Factorization Of A Whole Number

Prime and composite numbers

Notice that the only factors of 7 are 1 and 7 itself, and that the only factors of 23 are 1 and 23 itself.

Prime number

A whole number greater than 1 whose only whole number factors are itself and 1 is called a prime number.

The first seven prime numbers are

2, 3, 5, 7, 11, 13, and 17

The number 1 is not considered to be a prime number, and the number 2 is the first and only even prime number.
Many numbers have factors other than themselves and 1. For example, the factors of 28 are 1, 2, 4, 7, 14, and 28 (since each of these whole numbers and only these whole numbers divide into 28 without a remainder).

Composite numbers

A whole number that is composed of factors other than itself and 1 is called a composite number. Composite numbers are not prime numbers.

Some composite numbers are 4, 6, 8, 10, 12, and 15.

The fundamental principle of arithmetic

Prime numbers are very important in the study of mathematics. We will use them soon in our study of fractions. We will now, however, be introduced to an important mathematical principle.

The fundamental principle of arithmetic

Except for the order of the factors, every whole number, other than 1, can be factored in one and only one way as a product of prime numbers.

Prime factorization

When a number is factored so that all its factors are prime numbers, the factorization is called the prime factorization of the number.

Sample set a

Find the prime factorization of 10.

10 = 2 · 5

Both 2 and 5 are prime numbers. Thus, 2 · 5 is the prime factorization of 10.

Got questions? Get instant answers now!

Find the prime factorization of 60.

60 = 2 · 30 30 is not prime . 30 = 2 · 15 = 2 · 2 · 15 15  is not prime . 15 = 3 · 5 = 2 · 2 · 3 · 5 We'll use exponents .  2 · 2 = 2 2 = 2 2 · 3 · 5

The numbers 2, 3, and 5 are all primes. Thus, 2 2 · 3 · 5 is the prime factorization of 60.

Got questions? Get instant answers now!

Find the prime factorization of 11.

11 is a prime number. Prime factorization applies only to composite numbers.

Got questions? Get instant answers now!

The prime factorization of a whole number

The following method provides a way of finding the prime factorization of a whole number. The examples that follow will use the method and make it more clear.

  1. Divide the number repeatedly by the smallest prime number that will divide into the number without a remainder.
  2. When the prime number used in step 1 no longer divides into the given number without a remainder, repeat the process with the next largest prime number.
  3. Continue this process until the quotient is 1.
  4. The prime factorization of the given number is the product of all these prime divisors.

Sample set b

Find the prime factorization of 60.

Since 60 is an even number, it is divisible by 2. We will repeatedly divide by 2 until we no longer can (when we start getting a remainder). We shall divide in the following way.

The prime factorization of sixty. See the longdesc for a full description.    30 is divisible by 2 again . 15 is not divisible by 2, but is divisible by 3, the next largest prime . 5 is not divisible by 3, but is divisible by 5, the next largest prime . The quotient is 1 so we stop the division process .

The prime factorization of 60 is the product of all these divisors.

60 = 2 · 2 · 3 · 5 We will use exponents when possible . 60 = 2 2 · 3 · 5

Got questions? Get instant answers now!

Find the prime factorization of 441.

Since 441 is an odd number, it is not divisible by 2. We’ll try 3, the next largest prime.

The prime factorization of four hundred forty-one. See the longdesc for a full description.    147 is divisible by 3 . 49 is not divisible by 3 nor by 5 ,  but by 7 . 7 is divisible by 7 . The quotient is 1 so we stop the division process .

The prime factorization of 441 is the product of all the divisors.

441 = 3 · 3 · 7 · 7 We will use exponents when possible . 441 = 3 2 · 7 2

Got questions? Get instant answers now!

Exercises

For the following problems, determine which whole numbers are prime and which are composite.

For the following problems, find the prime factorization of each whole number. Use exponents on repeated factors.

819

3 2 · 7 · 13

Got questions? Get instant answers now!

148,225

5 2 · 7 2 · 11 2

Got questions? Get instant answers now!

Questions & Answers

a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
how did I we'll learn this
Noor Reply
f(x)= 2|x+5| find f(-6)
Prince Reply
f(n)= 2n + 1
Samantha Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask