# 4.5 Division of fractions

 Page 1 / 1
This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module discusses division of fractions. By the end of the module students should be able to determine the reciprocal of a number and divide one fraction by another.

## Section overview

• Reciprocals
• Dividing Fractions

## Reciprocals

Two numbers whose product is 1 are called reciprocals of each other.

## Sample set a

The following pairs of numbers are reciprocals.

$\begin{array}{c}\underbrace{\frac{3}{4}\text{and}\frac{4}{3}}\\ \frac{3}{4}\cdot \frac{4}{3}=1\end{array}$

$\begin{array}{c}\underbrace{\frac{7}{16}\text{and}\frac{16}{7}}\\ \frac{7}{16}\cdot \frac{16}{7}=1\end{array}$

$\begin{array}{c}\underbrace{\frac{1}{6}\text{and}\frac{6}{1}}\\ \frac{1}{6}\cdot \frac{6}{1}=1\end{array}$

Notice that we can find the reciprocal of a nonzero number in fractional form by inverting it (exchanging positions of the numerator and denominator).

## Practice set a

Find the reciprocal of each number.

$\frac{3}{\text{10}}$

$\frac{\text{10}}{3}$

$\frac{2}{3}$

$\frac{3}{2}$

$\frac{7}{8}$

$\frac{8}{7}$

$\frac{1}{5}$

5

$2\frac{2}{7}$

Write this number as an improper fraction first.

$\frac{7}{\text{16}}$

$5\frac{1}{4}$

$\frac{4}{\text{21}}$

$\text{10}\frac{3}{\text{16}}$

$\frac{\text{16}}{\text{163}}$

## Dividing fractions

Our concept of division is that it indicates how many times one quantity is con­tained in another quantity. For example, using the diagram we can see that there are 6 one-thirds in 2.

There are 6 one-thirds in 2.

Since 2 contains six $\frac{1}{3}$ 's we express this as

Using these observations, we can suggest the following method for dividing a number by a fraction.

## Dividing one fraction by another fraction

To divide a first fraction by a second, nonzero fraction, multiply the first traction by the reciprocal of the second fraction.

## Invert and multiply

This method is commonly referred to as "invert the divisor and multiply."

## Sample set b

Perform the following divisions.

$\frac{1}{3}÷\frac{3}{4}$ . The divisor is $\frac{3}{4}$ . Its reciprocal is $\frac{4}{3}$ . Multiply $\frac{1}{3}$ by $\frac{4}{3}$ .

$\frac{1}{3}\cdot \frac{4}{3}=\frac{1\cdot 4}{3\cdot 3}=\frac{4}{9}$

$\frac{1}{3}÷\frac{3}{4}=\frac{4}{9}$

$\frac{3}{8}÷\frac{5}{4}$ The divisor is $\frac{5}{4}$ . Its reciprocal is $\frac{4}{5}$ . Multiply $\frac{3}{8}$ by $\frac{4}{5}$ .

$\frac{3}{\underset{2}{\overline{)3}}}\cdot \frac{\stackrel{1}{\overline{)4}}}{5}=\frac{3\cdot 1}{2\cdot 5}=\frac{3}{\text{10}}$

$\frac{3}{8}÷\frac{5}{4}=\frac{3}{\text{10}}$

$\frac{5}{6}÷\frac{5}{\text{12}}$ . The divisor is $\frac{5}{\text{12}}$ . Its reciprocal is $\frac{\text{12}}{5}$ . Multiply $\frac{5}{6}$ by $\frac{\text{12}}{5}$ .

$\frac{\stackrel{1}{\overline{)5}}}{\underset{1}{\overline{)6}}}\cdot \frac{\stackrel{2}{\overline{)\text{12}}}}{\underset{1}{\overline{)5}}}=\frac{1\cdot 2}{1\cdot 1}=\frac{2}{1}=2$

$\frac{5}{6}÷\frac{5}{12}=2$

$2\frac{2}{9}÷3\frac{1}{3}$ . Convert each mixed number to an improper fraction.

$2\frac{2}{9}=\frac{9\cdot 2+2}{9}=\frac{\text{20}}{9}$ .

$3\frac{1}{3}=\frac{3\cdot 3+1}{3}=\frac{10}{3}$ .

$\frac{\text{20}}{9}÷\frac{\text{10}}{3}$ The divisor is $\frac{\text{10}}{3}$ . Its reciprocal is $\frac{3}{\text{10}}$ . Multiply $\frac{\text{20}}{9}$ by $\frac{3}{\text{10}}$ .

$\frac{\stackrel{2}{\overline{)20}}}{\underset{3}{\overline{)9}}}\cdot \frac{\stackrel{1}{\overline{)3}}}{\underset{1}{\overline{)10}}}=\frac{2\cdot 1}{3\cdot 1}=\frac{2}{3}$

$2\frac{2}{9}÷3\frac{1}{3}=\frac{2}{3}$

$\frac{\text{12}}{\text{11}}÷8$ . First conveniently write 8 as $\frac{8}{1}$ .

$\frac{\text{12}}{\text{11}}÷\frac{8}{1}$ The divisor is $\frac{8}{1}$ . Its reciprocal is $\frac{1}{8}$ . Multiply $\frac{\text{12}}{\text{11}}$ by $\frac{1}{8}$ .

$\frac{\stackrel{3}{\overline{)12}}}{\text{11}}\cdot \frac{1}{\underset{2}{\overline{)8}}}=\frac{3\cdot 1}{\text{11}\cdot 2}=\frac{3}{\text{22}}$

$\frac{\text{12}}{\text{11}}÷8=\frac{3}{\text{22}}$

$\frac{7}{8}÷\frac{\text{21}}{\text{20}}\cdot \frac{3}{\text{35}}$ . The divisor is $\frac{\text{21}}{\text{20}}$ . Its reciprocal is $\frac{\text{20}}{\text{21}}$ .

$\frac{\stackrel{1}{\overline{)7}}}{\underset{2}{\overline{)8}}}\cdot \frac{\stackrel{\stackrel{1}{\overline{)5}}}{\overline{)\text{20}}}}{\underset{\underset{1}{\overline{)3}}}{\overline{)\text{21}}}}\frac{\stackrel{1}{\overline{)3}}}{\underset{7}{\overline{)\text{35}}}}=\frac{1\cdot 1\cdot 1}{2\cdot 1\cdot 7}=\frac{1}{\text{14}}$

$\frac{7}{8}÷\frac{\text{21}}{\text{20}}\cdot \frac{3}{\text{25}}=\frac{1}{\text{14}}$

How many $2\frac{3}{8}$ -inch-wide packages can be placed in a box 19 inches wide?

The problem is to determine how many two and three eighths are contained in 19, that is, what is $\text{19}÷2\frac{3}{8}$ ?

$2\frac{3}{8}=\frac{\text{19}}{8}$ Convert the divisor $2\frac{3}{8}$ to an improper fraction.

$\text{19}=\frac{\text{19}}{1}$ Write the dividend 19 as $\frac{\text{19}}{1}$ .

$\frac{\text{19}}{1}÷\frac{\text{19}}{8}$ The divisor is $\frac{\text{19}}{8}$ . Its reciprocal is $\frac{8}{\text{19}}$ .

$\frac{\stackrel{1}{\overline{)\text{19}}}}{1}\cdot \frac{8}{\underset{1}{\overline{)\text{19}}}}=\frac{1\cdot 8}{1\cdot 1}=\frac{8}{1}=8$

Thus, 8 packages will fit into the box.

## Practice set b

Perform the following divisions.

$\frac{1}{2}÷\frac{9}{8}$

$\frac{4}{9}$

$\frac{3}{8}÷\frac{9}{\text{24}}$

1

$\frac{7}{\text{15}}÷\frac{\text{14}}{\text{15}}$

$\frac{1}{2}$

$8÷\frac{8}{\text{15}}$

15

$6\frac{1}{4}÷\frac{5}{\text{12}}$

15

$3\frac{1}{3}÷1\frac{2}{3}$

2

$\frac{5}{6}÷\frac{2}{3}\cdot \frac{8}{\text{25}}$

$\frac{2}{5}$

A container will hold 106 ounces of grape juice. How many $6\frac{5}{8}$ -ounce glasses of grape juice can be served from this container?

16 glasses

Determine each of the following quotients and then write a rule for this type of division.

$1÷\frac{2}{3}$

$\frac{3}{2}$

$1÷\frac{3}{8}$

$\frac{8}{3}$

$1÷\frac{3}{4}$

$\frac{4}{3}$

$1÷\frac{5}{2}$

$\frac{2}{5}$

When dividing 1 by a fraction, the quotient is the .

is the reciprocal of the fraction.

## Exercises

For the following problems, find the reciprocal of each number.

$\frac{4}{5}$

$\frac{5}{4}$ or $1\frac{1}{4}$

$\frac{8}{\text{11}}$

$\frac{2}{9}$

$\frac{9}{2}$ or $4\frac{1}{2}$

$\frac{1}{5}$

$3\frac{1}{4}$

$\frac{4}{\text{13}}$

$8\frac{1}{4}$

$3\frac{2}{7}$

$\frac{7}{\text{23}}$

$5\frac{3}{4}$

1

1

4

For the following problems, find each value.

$\frac{3}{8}÷\frac{3}{5}$

$\frac{5}{8}$

$\frac{5}{9}÷\frac{5}{6}$

$\frac{9}{\text{16}}÷\frac{\text{15}}{8}$

$\frac{3}{\text{10}}$

$\frac{4}{9}÷\frac{6}{\text{15}}$

$\frac{\text{25}}{\text{49}}÷\frac{4}{9}$

$\frac{\text{225}}{\text{196}}$ or $1\frac{\text{29}}{\text{196}}$

$\frac{\text{15}}{4}÷\frac{\text{27}}{8}$

$\frac{\text{24}}{\text{75}}÷\frac{8}{\text{15}}$

$\frac{3}{5}$

$\frac{5}{7}÷0$

$\frac{7}{8}÷\frac{7}{8}$

1

$0÷\frac{3}{5}$

$\frac{4}{\text{11}}÷\frac{4}{\text{11}}$

1

$\frac{2}{3}÷\frac{2}{3}$

$\frac{7}{\text{10}}÷\frac{\text{10}}{7}$

$\frac{\text{49}}{\text{100}}$

$\frac{3}{4}÷6$

$\frac{9}{5}÷3$

$\frac{3}{5}$

$4\frac{1}{6}÷3\frac{1}{3}$

$7\frac{1}{7}÷8\frac{1}{3}$

$\frac{6}{7}$

$1\frac{1}{2}÷1\frac{1}{5}$

$3\frac{2}{5}÷\frac{6}{\text{25}}$

$\frac{\text{85}}{6}$ or $\text{14}\frac{1}{6}$

$5\frac{1}{6}÷\frac{\text{31}}{6}$

$\frac{\text{35}}{6}÷3\frac{3}{4}$

$\frac{\text{28}}{\text{18}}=\frac{\text{14}}{9}$ or $1\frac{5}{9}$

$5\frac{1}{9}÷\frac{1}{\text{18}}$

$8\frac{3}{4}÷\frac{7}{8}$

10

$\frac{\text{12}}{8}÷1\frac{1}{2}$

$3\frac{1}{8}÷\frac{\text{15}}{\text{16}}$

$\frac{\text{10}}{3}$ or $3\frac{1}{3}$

$\text{11}\frac{\text{11}}{\text{12}}÷9\frac{5}{8}$

$2\frac{2}{9}÷\text{11}\frac{2}{3}$

$\frac{4}{\text{21}}$

$\frac{\text{16}}{3}÷6\frac{2}{5}$

$4\frac{3}{\text{25}}÷2\frac{\text{56}}{\text{75}}$

$\frac{3}{2}$ or $1\frac{1}{2}$

$\frac{1}{\text{1000}}÷\frac{1}{\text{100}}$

$\frac{3}{8}÷\frac{9}{\text{16}}\cdot \frac{6}{5}$

$\frac{4}{5}$

$\frac{3}{\text{16}}\cdot \frac{9}{8}\cdot \frac{6}{5}$

$\frac{4}{\text{15}}÷\frac{2}{\text{25}}\cdot \frac{9}{\text{10}}$

3

$\frac{\text{21}}{\text{30}}\cdot 1\frac{1}{4}÷\frac{9}{\text{10}}$

$8\frac{1}{3}\cdot \frac{\text{36}}{\text{75}}÷4$

1

## Exercises for review

( [link] ) What is the value of 5 in the number 504,216?

( [link] ) Find the product of 2,010 and 160.

321,600

( [link] ) Use the numbers 8 and 5 to illustrate the commutative property of multiplication.

( [link] ) Find the least common multiple of 6, 16, and 72.

144

( [link] ) Find $\frac{8}{9}$ of $6\frac{3}{4}$ .

a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
is it 3×y ?
J, combine like terms 7x-4y
im not good at math so would this help me
how did I we'll learn this
f(x)= 2|x+5| find f(-6)
f(n)= 2n + 1
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
7hours 36 min - 4hours 50 min