<< Chapter < Page Chapter >> Page >
This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module discusses how to convert a fraction to a decimal. By the end of the module students should be able to convert a fraction to a decimal.

Now that we have studied and practiced dividing with decimals, we are also able to convert a fraction to a decimal. To do so we need only recall that a fraction bar can also be a division symbol. Thus, 3 4 size 12{ { {3} over {4} } } {} not only means "3 objects out of 4," but can also mean "3 divided by 4."

Sample set a

Convert the following fractions to decimals. If the division is nonterminating, round to two decimal places.

3 4 size 12{ { {3} over {4} } } {} . Divide 3 by 4.

.75 4 3.00 2 8   ̲ 20 20 ̲ 0

Thus, 3 4 = 0 . 75 size 12{ { {3} over {4} } =0 "." "75"} {} .

1 5 size 12{ { {1} over {5} } } {} Divide 1 by 5.

.2 5 1.0 1.0 ̲ 0

Thus, 1 5 = 0 . 2 size 12{ { {1} over {5} } =0 "." 2} {}

5 6 size 12{ { {5} over {6} } } {} . Divide 5 by 6.

Long division. 5 divided by 6 ends in a recurring remainder. The quotient is .833. The recurring remainder indicates that the division is nonterminating.

5 6 = 0 . 833 size 12{ { {5} over {6} } =0 "." "833" dotsaxis } {} We are to round to two decimal places.

Thus, 5 6 = 0 . 83 size 12{ { {5} over {6} } =0 "." "83"} {} to two decimal places.

5 1 8 size 12{5 { {1} over {8} } } {} . Note that 5 1 8 = 5 + 1 8 size 12{5 { {1} over {8} } =5+ { {1} over {8} } } {} .

Convert 1 8 size 12{ { {1} over {8} } } {} to a decimal.

.125 8 1.000   8     ̲ 20   16   ̲ 40 40 ̲ 0

1 8 = . 125 size 12{ { {1} over {8} } = "." "125"} {}

Thus, 5 1 8 = 5 + 1 8 = 5 + . 125 = 5 . 125 size 12{5 { {1} over {8} } =5+ { {1} over {8} } =5+ "." "125"=5 "." "125"} {} .

0 . 16 1 4 size 12{0 "." "16" { {1} over {4} } } {} . This is a complex decimal.

Note that the 6 is in the hundredths position.

The number 0 . 16 1 4 size 12{0 "." "16" { {1} over {4} } } {} is read as "sixteen and one-fourth hundredths."

0 . 16 1 4 = 16 1 4 100 = 16 4 + 1 4 100 = 65 4 100 1 = 65 13 4 1 100 20 = 13 1 4 20 = 13 80 size 12{0 "." "16" { {1} over {4} } = { {"16" { {1} over {4} } } over {"100"} } = { { { {"16" cdot 4+1} over {4} } } over {"100"} } = { { { {"65"} over {4} } } over { { {"100"} over {1} } } } = { { {"65"} cSup { size 8{"13"} } } over {4} } cdot { {1} over { {"100"} cSub { size 8{"20"} } } } = { {"13" cdot 1} over {4 cdot "20"} } = { {"13"} over {"80"} } } {}

Now, convert 13 80 size 12{ { {"13"} over {"80"} } } {} to a decimal.

.1625 80 13.0000 8 0       ̲ 5 00     4 80     ̲ 200   160   ̲ 400 400 ̲ 0

Thus, 0 . 16 1 4 = 0 . 1625 size 12{0 "." "16" { {1} over {4} } =0 "." "1625"} {} .

Practice set a

Convert the following fractions and complex decimals to decimals (in which no proper fractions appear). If the divison is nonterminating, round to two decimal places.

1 4 size 12{ { {1} over {4} } } {}

0.25

1 25 size 12{ { {1} over {"25"} } } {}

0.04

1 6 size 12{ { {1} over {6} } } {}

0.17

15 16 size 12{ { {"15"} over {"16"} } } {}

0.9375

0 . 9 1 2 size 12{0 "." 9 { {1} over {2} } } {}

0.95

8 . 0126 3 8 size 12{8 "." "0126" { {3} over {8} } } {}

8.0126375

Exercises

For the following 30 problems, convert each fraction or complex decimal number to a decimal (in which no proper fractions appear).

1 2 size 12{ { {1} over {2} } } {}

0.5

4 5 size 12{ { {4} over {5} } } {}

7 8 size 12{ { {7} over {8} } } {}

0.875

5 8 size 12{ { {5} over {8} } } {}

3 5 size 12{ { {3} over {5} } } {}

0.6

2 5 size 12{ { {2} over {5} } } {}

1 25 size 12{ { {1} over {"25"} } } {}

0.04

3 25 size 12{ { {3} over {"25"} } } {}

1 20 size 12{ { {1} over {"20"} } } {}

0.05

1 15 size 12{ { {1} over {"15"} } } {}

1 50 size 12{ { {1} over {"50"} } } {}

0.02

1 75 size 12{ { {1} over {"75"} } } {}

1 3 size 12{ { {1} over {3} } } {}

0 . 3 ¯ size 12{0 "." {overline {3}} } {}

5 6 size 12{ { {5} over {6} } } {}

3 16 size 12{ { {3} over {"16"} } } {}

0.1875

9 16 size 12{ { {9} over {"16"} } } {}

1 27 size 12{ { {1} over {"27"} } } {}

0 . 0 37 ¯ size 12{0 "." 0 {overline {"37"}} } {}

5 27 size 12{ { {5} over {"27"} } } {}

7 13 size 12{ { {7} over {"13"} } } {}

0 . 538461 ¯ size 12{0 "." {overline {"538461"}} } {}

9 14 size 12{ { {9} over {"14"} } } {}

7 2 3 size 12{7 { {2} over {3} } } {}

7 . 6 ¯ size 12{7 "." {overline {6}} } {}

8 5 16 size 12{8 { {5} over {"16"} } } {}

1 2 15 size 12{1 { {2} over {"15"} } } {}

1 . 1 3 ¯ size 12{1 "." 1 {overline {3}} } {}

65 5 22 size 12{"65" { {5} over {"22"} } } {}

101 6 25 size 12{"101" { {6} over {"25"} } } {}

101.24

0 . 1 1 2 size 12{0 "." 1 { {1} over {2} } } {}

0 . 24 1 8 size 12{0 "." "24" { {1} over {8} } } {}

0.24125

5 . 66 2 3 size 12{5 "." "66" { {2} over {3} } } {}

810 . 3106 5 16 size 12{"810" "." "3106" { {5} over {"16"} } } {}

810.31063125

4 . 1 1 9 size 12{4 "." 1 { {1} over {9} } } {}

For the following 18 problems, convert each fraction to a decimal. Round to five decimal places.

1 9 size 12{ { {1} over {9} } } {}

0.11111

2 9 size 12{ { {2} over {9} } } {}

3 9 size 12{ { {3} over {9} } } {}

0.33333

4 9 size 12{ { {4} over {9} } } {}

5 9 size 12{ { {5} over {9} } } {}

0.55556

6 9 size 12{ { {6} over {9} } } {}

7 9 size 12{ { {7} over {9} } } {}

0.77778

8 9 size 12{ { {8} over {9} } } {}

1 11 size 12{ { {1} over {"11"} } } {}

0.09091

2 11 size 12{ { {2} over {"11"} } } {}

3 11 size 12{ { {3} over {"11"} } } {}

0.27273

4 11 size 12{ { {4} over {"11"} } } {}

5 11 size 12{ { {5} over {"11"} } } {}

0.45455

6 11 size 12{ { {6} over {"11"} } } {}

7 11 size 12{ { {7} over {"11"} } } {}

0.63636

8 11 size 12{ { {8} over {"11"} } } {}

9 11 size 12{ { {9} over {"11"} } } {}

0.81818

10 11 size 12{ { {"10"} over {"11"} } } {}

Calculator problems

For the following problems, use a calculator to convert each fraction to a decimal. If no repeating pattern seems to exist, round to four decimal places.

16 125 size 12{ { {"16"} over {"125"} } } {}

0.128

85 311 size 12{ { {"85"} over {"311"} } } {}

192 197 size 12{ { {"192"} over {"197"} } } {}

0.9746

1 1469 size 12{ { {1} over {"1469"} } } {}

4 21 , 015 size 12{ { {4} over {"21","015"} } } {}

0.0002

81 , 426 106 , 001 size 12{ { {"81","426"} over {"106","001"} } } {}

16 , 501 426 size 12{ { {"16","501"} over {"426"} } } {}

38.7347

Exercises for review

( [link] ) Round 2,105,106 to the nearest hundred thousand.

( [link] ) 8 5 size 12{ { {8} over {5} } } {} of what number is 3 2 size 12{ { {3} over {2} } } {} ?

15 16 size 12{ { {"15"} over {"16"} } } {}

( [link] ) Arrange 1 9 16 size 12{1 { {9} over {"16"} } } {} , 1 5 8 size 12{1 { {5} over {8} } } {} , and 1 7 12 size 12{1 { {7} over {"12"} } } {} in increasing order.

( [link] ) Convert the complex decimal 3 . 6 5 4 size 12{3 "." 6 { {5} over {4} } } {} to a fraction.

3 29 40 size 12{3 { {"29"} over {"40"} } } {} or 3.725

( [link] ) Find the quotient. 30 ÷ 1 . 1 size 12{"30" div 1 "." 1} {} .

Questions & Answers

so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Contemporary math applications. OpenStax CNX. Dec 15, 2014 Download for free at http://legacy.cnx.org/content/col11559/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?

Ask