# 4.5 Combining polynomials using multiplication  (Page 2/2)

 Page 2 / 2

$\left(a+b\right)\left(c+d\right)=ac+ad+bc+bd$

This method is commonly called the FOIL method .

• F First terms
• O Outer terms
• I Inner terms
• L Last terms

$\left(a+b\right)\left(2+3\right)=\underset{2\text{\hspace{0.17em}}\text{terms}}{\underbrace{\left(a+b\right)+\left(a+b\right)}}+\underset{3\text{\hspace{0.17em}}\text{terms}}{\underbrace{\left(a+b\right)+\left(a+b\right)+\left(a+b\right)}}$

Rearranging,

$\begin{array}{l}=a+a+b+b+a+a+a+b+b+b\\ =2a+2b+3a+3b\end{array}$

Combining like terms,

$=5a+5b$

This use of the distributive property suggests the following rule.

## Multiplying a polynomial by a polynomial

To multiply two polynomials together, multiply every term of one polynomial by every term of the other polynomial.

## Sample set c

Perform the following multiplications and simplify.

With some practice, the second and third terms can be combined mentally.

$\begin{array}{lll}{\left(m-3\right)}^{2}\hfill & =\hfill & \left(m-3\right)\left(m-3\right)\hfill \\ \hfill & =\hfill & m\cdot m+m\left(-3\right)-3\cdot m-3\left(-3\right)\hfill \\ \hfill & =\hfill & {m}^{2}-3m-3m+9\hfill \\ \hfill & =\hfill & {m}^{2}-6m+9\hfill \end{array}$

$\begin{array}{llll}{\left(x+5\right)}^{3}\hfill & =\hfill & \left(x+5\right)\left(x+5\right)\left(x+5\right)\hfill & \text{Associate}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{first}\text{\hspace{0.17em}}\text{two}\text{\hspace{0.17em}}\text{factors}\text{.}\hfill \\ \hfill & =\hfill & \left[\left(x+5\right)\left(x+5\right)\right]\left(x+5\right)\hfill & \hfill \\ \hfill & =\hfill & \left[{x}^{2}+5x+5x+25\right]\left(x+5\right)\hfill & \hfill \\ \hfill & =\hfill & \left[{x}^{2}+10x+25\right]\left(x+5\right)\hfill & \hfill \\ \hfill & =\hfill & {x}^{2}\cdot x+{x}^{2}\cdot 5+10x\cdot x+10x\cdot 5+25\cdot x+25\cdot 5\hfill & \hfill \\ \hfill & =\hfill & {x}^{3}+5{x}^{2}+10{x}^{2}+50x+25x+125\hfill & \hfill \\ \hfill & =\hfill & {x}^{3}+15{x}^{2}+75x+125\hfill & \hfill \end{array}$

## Practice set c

Find the following products and simplify.

$\left(a+1\right)\left(a+4\right)$

${a}^{2}+5a+4$

$\left(m-9\right)\left(m-2\right)$

${m}^{2}-11m+18$

$\left(2x+4\right)\left(x+5\right)$

$2{x}^{2}+14x+20$

$\left(x+y\right)\left(2x-3y\right)$

$2{x}^{2}-xy-3{y}^{2}$

$\left(3{a}^{2}-1\right)\left(5{a}^{2}+a\right)$

$15{a}^{4}+3{a}^{3}-5{a}^{2}-a$

$\left(2{x}^{2}{y}^{3}+x{y}^{2}\right)\left(5{x}^{3}{y}^{2}+{x}^{2}y\right)$

$10{x}^{5}y{}^{5}+7{x}^{4}{y}^{4}+{x}^{3}{y}^{3}$

$\left(a+3\right)\left({a}^{2}+3a+6\right)$

${a}^{3}+6{a}^{2}+15a+18$

$\left(a+4\right)\left(a+4\right)$

${a}^{2}+8a+16$

$\left(r-7\right)\left(r-7\right)$

${r}^{2}-14r+49$

${\left(x+6\right)}^{2}$

${x}^{2}+12x+36$

${\left(y-8\right)}^{2}$

${y}^{2}-16y+64$

## Sample set d

Perform the following additions and subtractions.

$\begin{array}{ll}3x+7+\left(x-3\right).\hfill & \text{We}\text{\hspace{0.17em}}\text{must}\text{\hspace{0.17em}}\text{first}\text{\hspace{0.17em}}\text{remove}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{parentheses}\text{.}\text{\hspace{0.17em}}\text{They}\text{\hspace{0.17em}}\text{are}\text{\hspace{0.17em}}\text{preceded}\text{\hspace{0.17em}}\text{by}\hfill \\ \hfill & \text{a}\text{\hspace{0.17em}}"+"\text{\hspace{0.17em}}\text{sign,}\text{\hspace{0.17em}}\text{so}\text{\hspace{0.17em}}\text{we}\text{\hspace{0.17em}}\text{remove}\text{\hspace{0.17em}}\text{them}\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}\text{leave}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{sign}\text{\hspace{0.17em}}\text{of}\text{\hspace{0.17em}}\text{​}\text{each}\hfill \\ \hfill & \text{term}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{same}\text{.}\hfill \\ 3x+7+x-3\hfill & \text{Combine}\text{\hspace{0.17em}}\text{like}\text{\hspace{0.17em}}\text{terms}\text{.}\hfill \\ 4x+4\hfill & \hfill \end{array}\text{\hspace{0.17em}}$

$\begin{array}{ll}5{y}^{3}+11-\left(12{y}^{3}-2\right).\hfill & \text{We}\text{\hspace{0.17em}}\text{first}\text{\hspace{0.17em}}\text{remove}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{parentheses}\text{.}\text{\hspace{0.17em}}\text{They}\text{\hspace{0.17em}}\text{are}\text{\hspace{0.17em}}\text{preceded}\text{\hspace{0.17em}}\text{by}\text{\hspace{0.17em}}\text{a}\hfill \\ \hfill & \text{"-"}\text{\hspace{0.17em}}\text{sign,}\text{\hspace{0.17em}}\text{so}\text{\hspace{0.17em}}\text{we}\text{\hspace{0.17em}}\text{remove}\text{\hspace{0.17em}}\text{them}\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}\text{change}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{sign}\text{\hspace{0.17em}}\text{of}\text{\hspace{0.17em}}\text{each}\hfill \\ \hfill & \text{term}\text{\hspace{0.17em}}\text{inside}\text{\hspace{0.17em}}\text{them}\text{.}\hfill \\ 5{y}^{3}+11-12{y}^{3}+2\hfill & \text{Combine}\text{\hspace{0.17em}}\text{like}\text{\hspace{0.17em}}\text{terms}\text{.}\hfill \\ -7{y}^{3}+13\hfill & \hfill \end{array}$

Add $4{x}^{2}+2x-8$ to $3{x}^{2}-7x-10$ .

$\begin{array}{l}\left(4{x}^{2}+2x-8\right)+\left(3{x}^{2}-7x-10\right)\\ 4{x}^{2}+2x-8+3{x}^{2}-7x-10\\ 7{x}^{2}-5x-18\end{array}$

Subtract $8{x}^{2}-5x+2$ from $3{x}^{2}+x-12$ .

$\begin{array}{l}\left(3{x}^{2}+x-12\right)-\left(8{x}^{2}-5x+2\right)\\ 3{x}^{2}+x-12-8{x}^{2}+5x-2\\ -5{x}^{2}+6x-14\end{array}$

Be very careful not to write this problem as

$3{x}^{2}+x-12-8{x}^{2}-5x+2$

This form has us subtracting only the very first term, $8{x}^{2}$ , rather than the entire expression. Use parentheses.
Another incorrect form is

$8{x}^{2}-5x+2-\left(3{x}^{2}+x-12\right)$

This form has us performing the subtraction in the wrong order.

## Practice set d

Perform the following additions and subtractions.

$6{y}^{2}+2y-1+\left(5{y}^{2}-18\right)$

$11{y}^{2}+2y-19$

$\left(9m-n\right)-\left(10m+12n\right)$

$-m-13n$

Add $2{r}^{2}+4r-1$ to $3{r}^{2}-r-7$ .

$5{r}^{2}+3r-8$

Subtract $4s-3$ from $7s+8$ .

$3s+11$

## Exercises

For the following problems, perform the multiplications and combine any like terms.

$7\left(x+6\right)$

$7x+42$

$4\left(y+3\right)$

$6\left(y+4\right)$

$6y+24$

$8\left(m+7\right)$

$5\left(a-6\right)$

$5a-30$

$2\left(x-10\right)$

$3\left(4x+2\right)$

$12x+6$

$6\left(3x+4\right)$

$9\left(4y-3\right)$

$36y-27$

$5\left(8m-6\right)$

$-9\left(a+7\right)$

$-9a-63$

$-3\left(b+8\right)$

$-4\left(x+2\right)$

$-4x-8$

$-6\left(y+7\right)$

$-3\left(a-6\right)$

$-3a+18$

$-9\left(k-7\right)$

$-5\left(2a+1\right)$

$-10a-5$

$-7\left(4x+2\right)$

$-3\left(10y-6\right)$

$-30y+18$

$-8\left(4y-11\right)$

$x\left(x+6\right)$

${x}^{2}+6x$

$y\left(y+7\right)$

$m\left(m-4\right)$

${m}^{2}-4m$

$k\left(k-11\right)$

$3x\left(x+2\right)$

$3{x}^{2}+6x$

$4y\left(y+7\right)$

$6a\left(a-5\right)$

$6{a}^{2}-30a$

$9x\left(x-3\right)$

$3x\left(5x+4\right)$

$15{x}^{2}+12x$

$4m\left(2m+7\right)$

$2b\left(b-1\right)$

$2{b}^{2}-2b$

$7a\left(a-4\right)$

$3{x}^{2}\left(5{x}^{2}+4\right)$

$15{x}^{4}+12{x}^{2}$

$9{y}^{3}\left(3{y}^{2}+2\right)$

$4{a}^{4}\left(5{a}^{3}+3{a}^{2}+2a\right)$

$20{a}^{7}+12{a}^{6}+8{a}^{5}$

$2{x}^{4}\left(6{x}^{3}-5{x}^{2}-2x+3\right)$

$-5{x}^{2}\left(x+2\right)$

$-5{x}^{3}-10{x}^{2}$

$-6{y}^{3}\left(y+5\right)$

$2{x}^{2}y\left(3{x}^{2}{y}^{2}-6x\right)$

$6{x}^{4}{y}^{3}-12{x}^{3}y$

$8{a}^{3}{b}^{2}c\left(2a{b}^{3}+3b\right)$

${b}^{5}{x}^{2}\left(2bx-11\right)$

$2{b}^{6}{x}^{3}-11{b}^{5}{x}^{2}$

$4x\left(3{x}^{2}-6x+10\right)$

$9{y}^{3}\left(2{y}^{4}-3{y}^{3}+8{y}^{2}+y-6\right)$

$18{y}^{7}-27{y}^{6}+72{y}^{5}+9{y}^{4}-54{y}^{3}$

$-{a}^{2}{b}^{3}\left(6a{b}^{4}+5a{b}^{3}-8{b}^{2}+7b-2\right)$

$\left(a+4\right)\left(a+2\right)$

${a}^{2}+6a+8$

$\left(x+1\right)\left(x+7\right)$

$\left(y+6\right)\left(y-3\right)$

${y}^{2}+3y-18$

$\left(t+8\right)\left(t-2\right)$

$\left(i-3\right)\left(i+5\right)$

${i}^{2}+2i-15$

$\left(x-y\right)\left(2x+y\right)$

$\left(3a-1\right)\left(2a-6\right)$

$6{a}^{2}-20a+6$

$\left(5a-2\right)\left(6a-8\right)$

$\left(6y+11\right)\left(3y+10\right)$

$18{y}^{2}+93y+110$

$\left(2t+6\right)\left(3t+4\right)$

$\left(4+x\right)\left(3-x\right)$

$-{x}^{2}-x+12$

$\left(6+a\right)\left(4+a\right)$

$\left({x}^{2}+2\right)\left(x+1\right)$

${x}^{3}+{x}^{2}+2x+2$

$\left({x}^{2}+5\right)\left(x+4\right)$

$\left(3{x}^{2}-5\right)\left(2{x}^{2}+1\right)$

$6{x}^{4}-7{x}^{2}-5$

$\left(4{a}^{2}{b}^{3}-2a\right)\left(5{a}^{2}b-3b\right)$

$\left(6{x}^{3}{y}^{4}+6x\right)\left(2{x}^{2}{y}^{3}+5y\right)$

$12{x}^{5}{y}^{7}+30{x}^{3}{y}^{5}+12{x}^{3}{y}^{3}+30xy$

$5\left(x-7\right)\left(x-3\right)$

$4\left(a+1\right)\left(a-8\right)$

$4{a}^{2}-28a-32$

$a\left(a-3\right)\left(a+5\right)$

$x\left(x+1\right)\left(x+4\right)$

${x}^{3}+5{x}^{2}+4x$

${x}^{2}\left(x+5\right)\left(x+7\right)$

${y}^{3}\left(y-3\right)\left(y-2\right)$

${y}^{5}-5{y}^{4}+6{y}^{3}$

$2{a}^{2}\left(a+4\right)\left(a+3\right)$

$5{y}^{6}\left(y+7\right)\left(y+1\right)$

$5{y}^{8}+40{y}^{7}+35{y}^{6}$

$a{b}^{2}\left({a}^{2}-2b\right)\left(a+{b}^{4}\right)$

${x}^{3}{y}^{2}\left(5{x}^{2}{y}^{2}-3\right)\left(2xy-1\right)$

$10{x}^{6}{y}^{5}-5{x}^{5}{y}^{4}-6{x}^{4}{y}^{3}+3{x}^{3}{y}^{2}$

$6\left({a}^{2}+5a+3\right)$

$8\left({c}^{3}+5c+11\right)$

$8{c}^{3}+40c+88$

$3{a}^{2}\left(2{a}^{3}-10{a}^{2}-4a+9\right)$

$6{a}^{3}{b}^{3}\left(4{a}^{2}{b}^{6}+7a{b}^{8}+2{b}^{10}+14\right)$

$24{a}^{5}{b}^{9}+42{a}^{4}{b}^{11}+12{a}^{3}{b}^{13}+18{a}^{3}{b}^{3}$

$\left(a-4\right)\left({a}^{2}+a-5\right)$

$\left(x-7\right)\left({x}^{2}+x-3\right)$

${x}^{3}-6{x}^{2}-10x+21$

$\left(2x+1\right)\left(5{x}^{3}+6{x}^{2}+8\right)$

$\left(7{a}^{2}+2\right)\left(3{a}^{5}-4{a}^{3}-a-1\right)$

$21{a}^{7}-22{a}^{5}-15{a}^{3}-7{a}^{2}-2a-2$

$\left(x+y\right)\left(2{x}^{2}+3xy+5{y}^{2}\right)$

$\left(2a+b\right)\left(5{a}^{2}+4{a}^{2}b-b-4\right)$

$10{a}^{3}+8{a}^{3}b+4{a}^{2}{b}^{2}+5{a}^{2}b-{b}^{2}-8a-4b-2ab$

${\left(x+3\right)}^{2}$

${\left(x+1\right)}^{2}$

${x}^{2}+2x+1$

${\left(x-5\right)}^{2}$

${\left(a+2\right)}^{2}$

${a}^{2}+4a+4$

${\left(a-9\right)}^{2}$

$-{\left(3x-5\right)}^{2}$

$-9{x}^{2}+30x-25$

$-{\left(8t+7\right)}^{2}$

For the following problems, perform the indicated operations and combine like terms.

$3{x}^{2}+5x-2+\left(4{x}^{2}-10x-5\right)$

$7{x}^{2}-5x-7$

$-2{x}^{3}+4{x}^{2}+5x-8+\left({x}^{3}-3{x}^{2}-11x+1\right)$

$-5x-12xy+4{y}^{2}+\left(-7x+7xy-2{y}^{2}\right)$

$2{y}^{2}-5xy-12x$

$\left(6{a}^{2}-3a+7\right)-4{a}^{2}+2a-8$

$\left(5{x}^{2}-24x-15\right)+{x}^{2}-9x+14$

$6{x}^{2}-33x-1$

$\left(3{x}^{3}-7{x}^{2}+2\right)+\left({x}^{3}+6\right)$

$\left(9{a}^{2}b-3ab+12a{b}^{2}\right)+a{b}^{2}+2ab$

$9{a}^{2}b+13a{b}^{2}-ab$

$6{x}^{2}-12x+\left(4{x}^{2}-3x-1\right)+4{x}^{2}-10x-4$

$5{a}^{3}-2a-26+\left(4{a}^{3}-11{a}^{2}+2a\right)-7a+8{a}^{3}+20$

$17{a}^{3}-11{a}^{2}-7a-6$

$2xy-15-\left(5xy+4\right)$

Add $4x+6$ to $8x-15$ .

$12x-9$

Add $5{y}^{2}-5y+1$ to $-9{y}^{2}+4y-2$ .

Add $3\left(x+6\right)$ to $4\left(x-7\right)$ .

$7x-10$

Add $-2\left({x}^{2}-4\right)$ to $5\left({x}^{2}+3x-1\right)$ .

Add four times $5x+2$ to three times $2x-1$ .

$26x+5$

Add five times $-3x+2$ to seven times $4x+3$ .

Add $-4$ times $9x+6$ to $-2$ times $-8x-3$ .

$-20x-18$

Subtract $6{x}^{2}-10x+4$ from $3{x}^{2}-2x+5$ .

Substract ${a}^{2}-16$ from ${a}^{2}-16$ .

0

## Exercises for review

( [link] ) Simplify ${\left(\frac{15{x}^{2}{y}^{6}}{5x{y}^{2}}\right)}^{4}$ .

( [link] ) Express the number 198,000 using scientific notation.

$1.98×{10}^{5}$

( [link] ) How many $4{a}^{2}{x}^{3}\text{'}\text{s}$ are there in $-16{a}^{4}{x}^{5}$ ?

( [link] ) State the degree of the polynomial $4x{y}^{3}+3{x}^{5}y-5{x}^{3}{y}^{3}$ , and write the numerical coefficient of each term.

$\text{degree}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}6;\text{\hspace{0.17em}}\text{\hspace{0.17em}}4,3,-5$

( [link] ) Simplify $3\left(4x-5\right)+2\left(5x-2\right)-\left(x-3\right)$ .

Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.