# 2.2 The fourier series

 Page 1 / 1
Here is the definition of the Fourier Series and some properties and examples

## The fourier series

The problem of expanding a finite length signal in a trigonometric series was posed and studied in the late 1700's by renown mathematicians such asBernoulli, d'Alembert, Euler, Lagrange, and Gauss. Indeed, what we now call the Fourier series and the formulas for the coefficients were used by Euler in1780. However, it was the presentation in 1807 and the paper in 1822 by Fourier stating that an arbitrary function could be represented by a series ofsines and cosines that brought the problem to everyone's attention and started serious theoretical investigations and practical applications that continue tothis day . The theoretical work has been at the center of analysis and the practicalapplications have been of major significance in virtually every field of quantitative science and technology. For these reasons and others, the Fourierseries is worth our serious attention in a study of signal processing.

## Definition of the fourier series

We assume that the signal $x\left(t\right)$ to be analyzed is well described by a real or complex valued function of a real variable $t$ defined over a finite interval $\left\{0\le t\le T\right\}$ . The trigonometric series expansion of $x\left(t\right)$ is given by

$x\left(t\right)=\frac{a\left(0\right)}{2}+\sum _{k=1}^{\infty }a\left(k\right){\mathrm{cos}}\left(\frac{2\pi }{T}kt\right)+b\left(k\right){\mathrm{sin}}\left(\frac{2\pi }{T}kt\right).$

where the sines and cosines are the basis functions for the expansion.The energy or power in an electrical, mechanical, etc. system is a function of the square of voltage, current, velocity, pressure, etc. For this reason, thenatural setting for a representation of signals is the Hilbert space of ${L}^{2}\left[0,T\right]$ . This modern formulation of the problem is developed in . The sinusoidal basis functions in the trigonometric expansion form a completeorthogonal set in ${L}^{2}\left[0,T\right]$ . The orthogonality is easily seen from inner products

$\left({\mathrm{cos}}\left(\frac{2\pi }{T}kt\right),{\mathrm{cos}}\left(\frac{2\pi }{T}\ell t\right)\right)={\int }_{0}^{T}{\mathrm{cos}}\left(\frac{2\pi }{T}kt\right){\mathrm{cos}}\left(\frac{2\pi }{T}\ell t\right)\right)dt=\delta \left(k-\ell \right)$
and
$\left({\mathrm{cos}}\left(\frac{2\pi }{T}kt\right),{\mathrm{sin}}\left(\frac{2\pi }{T}\ell t\right)\right)={\int }_{0}^{T}{\mathrm{cos}}\left(\frac{2\pi }{T}kt\right){\mathrm{sin}}\left(\frac{2\pi }{T}\ell t\right)\right)dt=0$
where the Kronecker delta function $\delta \left(0\right)=1$ and $\delta \left(k\ne 0\right)=0$ . Because of this, the $k$ th coefficients in the series can be found by taking the inner product of $x\left(t\right)$ with the $k$ th basis functions. This gives for the coefficients
$a\left(k\right)=\frac{2}{T}{\int }_{0}^{T}x\left(t\right){\mathrm{cos}}\left(\frac{2\pi }{T}kt\right)dt$
and
$b\left(k\right)=\frac{2}{T}{\int }_{0}^{T}x\left(t\right){\mathrm{sin}}\left(\frac{2\pi }{T}kt\right)dt$
where $T$ is the time interval of interest or the period of the periodic signal. Because of the orthogonality of the basis functions, a finite Fourier series formed by truncating the infiniteseries is an optimal least squared error approximation to $x\left(t\right)$ . If the finite series is defined by
$\stackrel{̂}{x}\left(t\right)=\frac{a\left(0\right)}{2}+\sum _{k=1}^{N}a\left(k\right){\mathrm{cos}}\left(\frac{2\pi }{T}kt\right)+b\left(k\right){\mathrm{sin}}\left(\frac{2\pi }{T}kt\right),$
the squared error is
$\varepsilon =\frac{1}{T}{\int }_{0}^{T}{|x\left(t\right)-\stackrel{̂}{x}\left(t\right)|}^{2}dt$
which is minimized over all $a\left(k\right)$ and $b\left(k\right)$ by ( ) and ( ). This is an extraordinarily important property.

It follows that if $x\left(t\right)\in {L}^{2}\left[0,T\right]$ , then the series converges to $x\left(t\right)$ in the sense that $\varepsilon \to 0$ as $N\to \infty$ . The question of point-wise convergence is more difficult. A sufficientcondition that is adequate for most application states: If $f\left(x\right)$ is bounded, is piece-wise continuous, and has no more than a finite number of maxima over an interval, the Fourier series converges point-wise to $f\left(x\right)$ at all points of continuity and to the arithmetic mean at points of discontinuities. If $f\left(x\right)$ is continuous, the series converges uniformly at all points .

A useful condition states that if $x\left(t\right)$ and its derivatives through the $q$ th derivative are defined and have bounded variation, the Fourier coefficients $a\left(k\right)$ and $b\left(k\right)$ asymptotically drop off at least as fast as $\frac{1}{{k}^{q+1}}$ as $k\to \infty$ . This ties global rates of convergence of the coefficients to local smoothnessconditions of the function.

The form of the Fourier series using both sines and cosines makes determination of the peak value or of the location of a particular frequencyterm difficult. A form that explicitly gives the peak value of the sinusoid of that frequency and the location or phase shift of that sinusoid is given by

$x\left(t\right)=\frac{d\left(0\right)}{2}+\sum _{k=1}^{\infty }d\left(k\right){\mathrm{cos}}\left(\frac{2\pi }{T}kt+\theta \left(k\right)\right)$
and, using Euler's relation and the usual electrical engineering notation of $j=\sqrt{-1}$ ,
${e}^{jx}={\mathrm{cos}}\left(x\right)+j{\mathrm{sin}}\left(x\right),$
the complex exponential form is obtained as
$x\left(t\right)=\sum _{k=-\infty }^{\infty }c\left(k\right){e}^{j\frac{2\pi }{T}kt}$
where
$c\left(k\right)=a\left(k\right)+jb\left(k\right).$
The coefficient equation is
$c\left(k\right)=\frac{1}{T}{\int }_{0}^{T}x\left(t\right){e}^{-j\frac{2\pi }{T}kt}dt$
The coefficients in these three forms are related by
${|d|}^{2}={|c|}^{2}={a}^{2}+{b}^{2}$
and
$\theta =arg\left\{c\right\}={{\mathrm{tan}}}^{-1}\left(\frac{b}{a}\right)$
It is easier to evaluate a signal in terms of $c\left(k\right)$ or $d\left(k\right)$ and $\theta \left(k\right)$ than in terms of $a\left(k\right)$ and $b\left(k\right)$ . The first two are polar representation of a complex value and the last isrectangular. The exponential form is easier to work with mathematically.

Although the function to be expanded is defined only over a specific finite region, the series converges to a function that is defined over the real lineand is periodic. It is equal to the original function over the region of definition and is a periodic extension outside of the region. Indeed, onecould artificially extend the given function at the outset and then the expansion would converge everywhere.

## A geometric view

It can be very helpful to develop a geometric view of the Fourier series where $x\left(t\right)$ is considered to be a vector and the basis functions are the coordinate or basis vectors. The coefficients become the projections of $x\left(t\right)$ on the coordinates. The ideas of a measure of distance, size, and orthogonality are important and the definition of error is easy to picture.This is done in using Hilbert space methods.

## Examples

• An example of the Fourier series is the expansion of a square wave signal withperiod $2\pi$ . The expansion is
$x\left(t\right)=\frac{4}{\pi }\left[{\mathrm{sin}}\left(t\right)+\frac{1}{3}{\mathrm{sin}}\left(3t\right)+\frac{1}{5}{\mathrm{sin}}\left(5t\right)\cdots \right].$
Because $x\left(t\right)$ is odd, there are no cosine terms (all $a\left(k\right)=0$ ) and, because of its symmetries, there are no even harmonics (even $k$ terms are zero). The function is well defined and bounded; its derivative is not, therefore, the coefficients drop off as $\frac{1}{k}$ .
• A second example is a triangle wave of period $2\pi$ . This is a continuous function where the square wave was not. The expansion ofthe triangle wave is
$x\left(t\right)=\frac{4}{\pi }\left[{\mathrm{sin}}\left(t\right)+\frac{1}{{3}^{2}}{\mathrm{sin}}\left(3t\right)+\frac{1}{{5}^{2}}{\mathrm{sin}}\left(5t\right)+\cdots \right].$
Here the coefficients drop off as $\frac{1}{{k}^{2}}$ since the function and its first derivative exist and are bounded.

Note the derivative of a triangle wave is a square wave. Examine the series coefficients to see this. There are many books and web sites on the Fourier series that give insight through examples and demos.

#### Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
sure. what is your question?
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!