# 6.4 Working with taylor series  (Page 4/11)

 Page 4 / 11

Use power series to solve ${y}^{\prime }=2y,\phantom{\rule{0.5em}{0ex}}y\left(0\right)=5.$

$y=5{e}^{2x}$

We now consider an example involving a differential equation that we cannot solve using previously discussed methods. This differential equation

${y}^{\prime }-xy=0$

is known as Airy’s equation . It has many applications in mathematical physics, such as modeling the diffraction of light. Here we show how to solve it using power series.

## Power series solution of airy’s equation

Use power series to solve

$y\text{″}-xy=0$

with the initial conditions $y\left(0\right)=a$ and $y\prime \left(0\right)=b.$

We look for a solution of the form

$y=\sum _{n=0}^{\infty }{c}_{n}{x}^{n}={c}_{0}+{c}_{1}x+{c}_{2}{x}^{2}+{c}_{3}{x}^{3}+{c}_{4}{x}^{4}+\text{⋯}.$

Differentiating this function term by term, we obtain

$\begin{array}{ccc}\hfill {y}^{\prime }& =\hfill & {c}_{1}+2{c}_{2}x+3{c}_{3}{x}^{2}+4{c}_{4}{x}^{3}+\text{⋯},\hfill \\ \hfill y\text{″}& =\hfill & 2·1{c}_{2}+3·2{c}_{3}x+4·3{c}_{4}{x}^{2}+\text{⋯}.\hfill \end{array}$

If y satisfies the equation $y\text{″}=xy,$ then

$2·1{c}_{2}+3·2{c}_{3}x+4·3{c}_{4}{x}^{2}+\text{⋯}=x\left({c}_{0}+{c}_{1}x+{c}_{2}{x}^{2}+{c}_{3}{x}^{3}+\text{⋯}\right).$

Using [link] on the uniqueness of power series representations, we know that coefficients of the same degree must be equal. Therefore,

$\begin{array}{c}2·1{c}_{2}=0,\hfill \\ 3·2{c}_{3}={c}_{0},\hfill \\ 4·3{c}_{4}={c}_{1},\hfill \\ 5·4{c}_{5}={c}_{2},\hfill \\ \hfill \text{⋮}.\hfill \end{array}$

More generally, for $n\ge 3,$ we have $n·\left(n-1\right){c}_{n}={c}_{n-3}.$ In fact, all coefficients can be written in terms of ${c}_{0}$ and ${c}_{1}.$ To see this, first note that ${c}_{2}=0.$ Then

$\begin{array}{}\\ \\ {c}_{3}=\frac{{c}_{0}}{3·2},\hfill \\ {c}_{4}=\frac{{c}_{1}}{4·3}.\hfill \end{array}$

For ${c}_{5},{c}_{6},{c}_{7},$ we see that

$\begin{array}{}\\ \\ {c}_{5}=\frac{{c}_{2}}{5·4}=0,\hfill \\ {c}_{6}=\frac{{c}_{3}}{6·5}=\frac{{c}_{0}}{6·5·3·2},\hfill \\ {c}_{7}=\frac{{c}_{4}}{7·6}=\frac{{c}_{1}}{7·6·4·3}.\hfill \end{array}$

Therefore, the series solution of the differential equation is given by

$y={c}_{0}+{c}_{1}x+0·{x}^{2}+\frac{{c}_{0}}{3·2}{x}^{3}+\frac{{c}_{1}}{4·3}{x}^{4}+0·{x}^{5}+\frac{{c}_{0}}{6·5·3·2}{x}^{6}+\frac{{c}_{1}}{7·6·4·3}{x}^{7}+\text{⋯}.$

The initial condition $y\left(0\right)=a$ implies ${c}_{0}=a.$ Differentiating this series term by term and using the fact that ${y}^{\prime }\left(0\right)=b,$ we conclude that ${c}_{1}=b.$ Therefore, the solution of this initial-value problem is

$y=a\left(1+\frac{{x}^{3}}{3·2}+\frac{{x}^{6}}{6·5·3·2}+\text{⋯}\right)+b\left(x+\frac{{x}^{4}}{4·3}+\frac{{x}^{7}}{7·6·4·3}+\text{⋯}\right).$

Use power series to solve $y\text{″}+{x}^{2}y=0$ with the initial condition $y\left(0\right)=a$ and ${y}^{\prime }\left(0\right)=b.$

$y=a\left(1-\frac{{x}^{4}}{3·4}+\frac{{x}^{8}}{3·4·7·8}-\text{⋯}\right)+b\left(x-\frac{{x}^{5}}{4·5}+\frac{{x}^{9}}{4·5·8·9}-\text{⋯}\right)$

## Evaluating nonelementary integrals

Solving differential equations is one common application of power series. We now turn to a second application. We show how power series can be used to evaluate integrals involving functions whose antiderivatives cannot be expressed using elementary functions.

One integral that arises often in applications in probability theory is $\int {e}^{\text{−}{x}^{2}}dx.$ Unfortunately, the antiderivative of the integrand ${e}^{\text{−}{x}^{2}}$ is not an elementary function. By elementary function, we mean a function that can be written using a finite number of algebraic combinations or compositions of exponential, logarithmic, trigonometric, or power functions. We remark that the term “elementary function” is not synonymous with noncomplicated function. For example, the function $f\left(x\right)=\sqrt{{x}^{2}-3x}+{e}^{{x}^{3}}-\text{sin}\left(5x+4\right)$ is an elementary function, although not a particularly simple-looking function. Any integral of the form $\int f\left(x\right)\phantom{\rule{0.1em}{0ex}}dx$ where the antiderivative of $f$ cannot be written as an elementary function is considered a nonelementary integral    .

Nonelementary integrals cannot be evaluated using the basic integration techniques discussed earlier. One way to evaluate such integrals is by expressing the integrand as a power series and integrating term by term. We demonstrate this technique by considering $\int {e}^{\text{−}{x}^{2}}dx.$

## Using taylor series to evaluate a definite integral

1. Express $\int {e}^{\text{−}{x}^{2}}dx$ as an infinite series.
2. Evaluate ${\int }_{0}^{1}{e}^{\text{−}{x}^{2}}dx$ to within an error of $0.01.$
1. The Maclaurin series for ${e}^{\text{−}{x}^{2}}$ is given by
$\begin{array}{cc}\hfill {e}^{\text{−}{x}^{2}}& =\sum _{n=0}^{\infty }\frac{{\left(\text{−}{x}^{2}\right)}^{n}}{n\text{!}}\hfill \\ & =1-{x}^{2}+\frac{{x}^{4}}{2\text{!}}-\frac{{x}^{6}}{3\text{!}}+\text{⋯}+{\left(-1\right)}^{n}\frac{{x}^{2n}}{n\text{!}}+\text{⋯}\hfill \\ & =\sum _{n=0}^{\infty }{\left(-1\right)}^{n}\frac{{x}^{2n}}{n\text{!}}.\hfill \end{array}$

Therefore,
$\begin{array}{cc}\hfill \int {e}^{\text{−}{x}^{2}}dx& =\int \left(1-{x}^{2}+\frac{{x}^{4}}{2\text{!}}-\frac{{x}^{6}}{3\text{!}}+\text{⋯}+{\left(-1\right)}^{n}\frac{{x}^{2n}}{n\text{!}}+\text{⋯}\right)\phantom{\rule{0.1em}{0ex}}dx\hfill \\ & =C+x-\frac{{x}^{3}}{3}+\frac{{x}^{5}}{5.2\text{!}}-\frac{{x}^{7}}{7.3\text{!}}+\text{⋯}+{\left(-1\right)}^{n}\frac{{x}^{2n+1}}{\left(2n+1\right)n\text{!}}+\text{⋯}.\hfill \end{array}$
2. Using the result from part a. we have
${\int }_{0}^{1}{e}^{\text{−}{x}^{2}}dx=1-\frac{1}{3}+\frac{1}{10}-\frac{1}{42}+\frac{1}{216}-\text{⋯}.$

The sum of the first four terms is approximately $0.74.$ By the alternating series test, this estimate is accurate to within an error of less than $\frac{1}{216}\approx 0.0046296<0.01.$

what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
how to synthesize TiO2 nanoparticles by chemical methods
Zubear
what's the program
Jordan
?
Jordan
what chemical
Jordan
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Leaves accumulate on the forest floor at a rate of 2 g/cm2/yr and also decompose at a rate of 90% per year. Write a differential equation governing the number of grams of leaf litter per square centimeter of forest floor, assuming at time 0 there is no leaf litter on the ground. Does this amount approach a steady value? What is that value?
You have a cup of coffee at temperature 70°C, which you let cool 10 minutes before you pour in the same amount of milk at 1°C as in the preceding problem. How does the temperature compare to the previous cup after 10 minutes?
Abdul