<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. This chapter contains many examples of arithmetic techniques that are used directly or indirectly in algebra. Since the chapter is intended as a review, the problem-solving techniques are presented without being developed. Therefore, no work space is provided, nor does the chapter contain all of the pedagogical features of the text. As a review, this chapter can be assigned at the discretion of the instructor and can also be a valuable reference tool for the student.

Overview

  • Equivalent Fractions
  • Reducing Fractions To Lowest Terms
  • Raising Fractions To Higher Terms

Equivalent fractions

Equivalent fractions

Fractions that have the same value are called equivalent fractions.

For example, 2 3 and 4 6 represent the same part of a whole quantity and are therefore equivalent. Several more collections of equivalent fractions are listed below.

7 6 , 14 12 , 21 18 , 28 24 , 35 30

Got questions? Get instant answers now!

Reducing fractions to lowest terms

Reduced to lowest terms

It is often useful to convert one fraction to an equivalent fraction that has reduced values in the numerator and denominator. When a fraction is converted to an equivalent fraction that has the smallest numerator and denominator in the collection of equivalent fractions, it is said to be reduced to lowest terms. The conversion process is called reducing a fraction.

We can reduce a fraction to lowest terms by

  1. Expressing the numerator and denominator as a product of prime numbers. (Find the prime factorization of the numerator and denominator. See Section ( [link] ) for this technique.)
  2. Divide the numerator and denominator by all common factors. (This technique is commonly called “cancelling.”)

Sample set a

Reduce each fraction to lowest terms.

6 18 = 2 · 3 2 · 3 · 3 = 2 · 3 2 · 3 · 3 2 and 3 are common factors . = 1 3

Got questions? Get instant answers now!

16 20 = 2 · 2 · 2 · 2 2 · 2 · 5 = 2 · 2 · 2 · 2 2 · 2 · 5 2 is the only common factor . = 4 5

Got questions? Get instant answers now!

56 70 = 2 · 4 · 7 2 · 5 · 7 = 2 · 4 · 7 2 · 5 · 7 2 and 7 are common factors . = 4 5

Got questions? Get instant answers now!

8 15 = 2 · 2 · 2 3 · 5 There are no common factors . Thus , 8 15  is reduced to lowest terms .

Got questions? Get instant answers now!

Raising a fraction to higher terms

Equally important as reducing fractions is raising fractions to higher terms. Raising a fraction to higher terms is the process of constructing an equivalent fraction that has higher values in the numerator and denominator. The higher, equivalent fraction is constructed by multiplying the original fraction by 1.

Notice that 3 5 and 9 15 are equivalent, that is 3 5 = 9 15 . Also,

The product of three over five and one is equal to the product of three over five and three over three. This is equal to the product of three and three over the product of five and three, that in turn is equal to nine over fifteen. There is an arrow pointing towards one and three over three, indicating that one and three over three are equal.

This observation helps us suggest the following method for raising a fraction to higher terms.

Raising a fraction to higher terms

A fraction can be raised to higher terms by multiplying both the numerator and denominator by the same nonzero number.

For example, 3 4 can be raised to 24 32 by multiplying both the numerator and denominator by 8, that is, multiplying by 1 in the form 8 8 .

3 4 = 3 · 8 4 · 8 = 24 32

How did we know to choose 8 as the proper factor? Since we wish to convert 4 to 32 by multiplying it by some number, we know that 4 must be a factor of 32. This means that 4 divides into 32. In fact, 32 ÷ 4 = 8. We divided the original denominator into the new, specified denominator to obtain the proper factor for the multiplication.

Sample set b

Determine the missing numerator or denominator.

3 7 = ? 35 . Divide the original denominator ,  7 ,  into the new denominator , 35. 35 ÷ 7 = 5. Multiply the original numerator by 5 . 3 7 = 3 · 5 7 · 5 = 15 35

Got questions? Get instant answers now!

5 6 = 45 ? . Divide the original numerator ,  5 ,  into the new numerator , 45. 45 ÷ 5 = 9. Multiply the original denominator by 9 . 5 6 = 5 · 9 6 · 9 = 45 54

Got questions? Get instant answers now!

Exercises

For the following problems, reduce, if possible, each fraction lowest terms.

For the following problems, determine the missing numerator or denominator.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask