<< Chapter < Page Chapter >> Page >
Schematic representation of an ALD process.

The deposition may be defined as self-limiting since one, and only one, monolayer of the reactant species remains on the surface after each exposure. In this case, one complete cycle results in the deposition of one monolayer of the compound on the substrate. Repeating this cycle leads to a controlled layer-by-layer growth. Thus the film thickness is controlled by the number of precursor cycles rather than the deposition time, as is the case for a CVD processes. This self-limiting behavior is the fundamental aspect of ALD and understanding the underlying mechanism is necessary for the future exploitation of ALD.

One basic condition for a successful ALD process is that the binding energy of a monolayer chemisorbed on a surface is higher than the binding energy of subsequent layers on top of the formed layer; the temperature of the reaction controls this. The temperature must be kept low enough to keep the monolayer on the surface until the reaction with the second reactant occurs, but high enough to re-evaporate or break the chemisorption bond. The control of a monolayer can further be influenced with the input of extra energy such as UV irradiation or laser beams. The greater the difference between the bond energy of a monolayer and the bond energies of the subsequent layers, the better the self-controlling characteristics of the process.

Basically, the ALD technique depends on the difference between chemisorption and physisorption. Physisorption involves the weak van der Waal's forces, whereas chemisorption involves the formation of relatively strong chemical bonds and requires some activation energy, therefore it may be slow and not always reversible. Above certain temperatures chemisorption dominates and it is at this temperature ALD operates best. Also, chemisorption is the reason that the process is self-controlling and insensitive to pressure and substrate changes because only one atomic or molecular layer can adsorb at the same time.

Equipment for the ald process

Equipment used in the ALD process may be classified in terms of their working pressure (vacuum, low pressure, atmospheric pressure), method of pulsing the precursors (moving substrate or valve sources) or according to the types of sources. Several system types are discussed.

In a typical moving substrate ALD growth system ( [link] ) the substrate, located in the recess part of the susceptor, is continuously rotated and cuts through streams of the gaseous precursors, in this case, trimethylgallium [TMG, Ga(CH 3 ) 3 ] and arsine (AsH 3 ). These gaseous precursors are introduced through separate lines and the gases come in contact with the substrate only when it revolves under the inlet tube. This cycle is repeated until the required thickness of GaAs is achieved. The exposure time to each of the gas streams is about 0.3 s.

A typical moving substrate ALD growth system used to grow GaAs films. Adapted from M. A. Tischler and S. M. Bedair, Appl. Phys. Lett ., 1986, 48 , 1681.

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Chemistry of electronic materials. OpenStax CNX. Aug 09, 2011 Download for free at http://cnx.org/content/col10719/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of electronic materials' conversation and receive update notifications?

Ask