<< Chapter < Page Chapter >> Page >

We call the moving charge "current" and we will talk about this later.

The amount of work done to move a charge from one point to another point in a circuit is called the potential difference between those two points. You can think of it as a difference in the potential energy of the charge due to its position in the circuit. The difference in potential energy, called potential difference, is equal to the amount of work done to move the charge between the two points.Just like with gravity, when you raise an object above the ground it has gravitational potential energy due to its position, the same goes for a charge in a circuit and electrical potential energy. Potential difference is measured between or across two points. We do not say potential difference through something.

Potential Difference

Electrical potential difference is the difference in electrical potential energy per unit charge between two points. The unit of potential difference is the volt named after the Italian physicist Alessandro Volta (1745–1827) (V). The potential difference of a battery is the voltage measured across it when current is flowing through it.

The unit of potential difference is the volt (V), which is the same as 1 joule per coulomb, the amount of work done per unit charge. Electrical potential difference is also called voltage.

Potential difference and emf

We use an instrument called a voltmeter to measure the potential difference between two points in a circuit. It must be connected across the two points, in parallel to that portion of the circuit as shown in the diagram below.

A voltmeter should be connected in parallel in a circuit.

Emf

When you use a voltmeter to measure the potential difference across (or between) the terminals of a battery, when no current is flowing through the battery, you are measuring the electromotive force (emf) of the battery. This is how much potential energy the battery has to make charges move through the circuit. It is a measure of how much chemical potential energy can be transferred to electrical energy in the battery. This driving potential energy is equal to the total potential energy drops in the circuit. This means that the voltage across the battery is equal to the sum of the voltages in the circuit.

emf
The emf (electromotive force) is the voltage measured across the terminals of a battery when no current is flowing through the battery.

You have now learnt that the emf is the voltage measured across the terminals of a battery when there is no current flowing through it and that the potential difference of a battery is the voltage measured across it when there is current flowing through it. So how do these two quantities compare with each other?

Experiment : investigate the emf and potential difference of a battery

Aim:

To measure the emf and potential difference across a battery in a circuit

Apparatus:

A battery, connecting wires, a light bulb, a switch, a voltmeter.

Method:

Set up a circuit with a battery, a lightbulb and a switch connected in series.

Questions & Answers

a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
how did I we'll learn this
Noor Reply
f(x)= 2|x+5| find f(-6)
Prince Reply
f(n)= 2n + 1
Samantha Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Physics - grade 10 [caps 2011]. OpenStax CNX. Jun 14, 2011 Download for free at http://cnx.org/content/col11298/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics - grade 10 [caps 2011]' conversation and receive update notifications?

Ask