<< Chapter < Page Chapter >> Page >

Electrons and energy

The removal of an electron from a molecule, oxidizing it, results in a decrease in potential energy in the oxidized compound. The electron (sometimes as part of a hydrogen atom), does not remain unbonded, however, in the cytoplasm of a cell. Rather, the electron is shifted to a second compound, reducing the second compound. The shift of an electron from one compound to another removes some potential energy from the first compound (the oxidized compound) and increases the potential energy of the second compound (the reduced compound). The transfer of electrons between molecules is important because most of the energy stored in atoms and used to fuel cell functions is in the form of high-energy electrons. The transfer of energy in the form of electrons allows the cell to transfer and use energy in an incremental fashion—in small packages rather than in a single, destructive burst. This chapter focuses on the extraction of energy from food; you will see that as you track the path of the transfers, you are tracking the path of electrons moving through metabolic pathways.

Electron carriers

In living systems, a small class of compounds functions as electron shuttles: They bind and carry high-energy electrons between compounds in pathways. The principal electron carriers we will consider are derived from the B vitamin group and are derivatives of nucleotides. These compounds can be easily reduced (that is, they accept electrons) or oxidized (they lose electrons). Nicotinamide adenine dinucleotide (NAD+) ( [link] ) is derived from vitamin B3, niacin. NAD + is the oxidized form of the molecule; NADH is the reduced form of the molecule after it has accepted two electrons and a proton (which together are the equivalent of a hydrogen atom with an extra electron).

NAD + can accept electrons from an organic molecule according to the general equation:

RH Reducing  agent  +  NAD + Oxidizing agent   NADH Reduced  + R Oxidized

When electrons are added to a compound, they are reduced. A compound that reduces another is called a reducing agent. In the above equation, RH is a reducing agent, and NAD + is reduced to NADH. When electrons are removed from compound, it oxidized. A compound that oxidizes another is called an oxidizing agent. In the above equation, NAD + is an oxidizing agent, and RH is oxidized to R.

Similarly, flavin adenine dinucleotide (FAD + ) is derived from vitamin B 2 , also called riboflavin. Its reduced form is FADH 2 . A second variation of NAD, NADP, contains an extra phosphate group. Both NAD + and FAD + are extensively used in energy extraction from sugars, and NADP plays an important role in anabolic reactions and photosynthesis.

This illustration shows the molecular structure of NAD^{+} and NADH. Both compounds are composed of an adenine nucleotide and a nicotinamide nucleotide, which bond together to form a dinucleotide. The nicotinamide nucleotide is at the 5' end, and the adenine nucleotide is at the 3’ end. Nicotinamide is a nitrogenous base, meaning it has nitrogen in a six-membered carbon ring. In NADH, one extra hydrogen is associated with this ring, which is not found in NAD^{+}.
The oxidized form of the electron carrier (NAD + ) is shown on the left and the reduced form (NADH) is shown on the right. The nitrogenous base in NADH has one more hydrogen ion and two more electrons than in NAD + .

Atp in living systems

A living cell cannot store significant amounts of free energy. Excess free energy would result in an increase of heat in the cell, which would result in excessive thermal motion that could damage and then destroy the cell. Rather, a cell must be able to handle that energy in a way that enables the cell to store energy safely and release it for use only as needed. Living cells accomplish this by using the compound adenosine triphosphate (ATP). ATP is often called the “energy currency” of the cell, and, like currency, this versatile compound can be used to fill any energy need of the cell. How? It functions similarly to a rechargeable battery.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ucd bis2a intro to biology v1.2. OpenStax CNX. Sep 22, 2015 Download for free at https://legacy.cnx.org/content/col11890/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ucd bis2a intro to biology v1.2' conversation and receive update notifications?

Ask