<< Chapter < Page Chapter >> Page >
Ejemplos y definiciones de varias propiedades asociadas con la convolución son descritas.

En este modulo veremos varias de las propiedades de convolución que mas prevalecen. Nótese que estas propiedades se aplican a ambas convoluciones de tiempo continuo y de tiempo discreto . (Véase los dos módulos anteriores si necesita un repaso de convolución). También para algunas demostraciones de las propiedades, usaremos las integrales de tiempo-continuo, pero podemos probarlas de la misma manera usando las sumatorias de tiempo-discreto.


Ley asociativa

f 1 t f 2 t f 3 t f 1 t f 2 t f 3 t

Implicación gráfica de la propiedad de asociatividad de la convolución.


: ley conmutativa

y t f t h t h t f t

Para probar la , lo único que tenemos que hacer es un pequeño cambio de variable en nuestra integral de convolución (o suma),

y t τ f τ h t τ
Dejando τ t τ , podemos mostrar fácilmente que la convolución es conmutativa :
y t τ f t τ h τ τ h τ f t τ
f t h t h t f t

La figura muestra que ambas funciones pueden ser vistas como entradas del sistema mientras lo otro es la respuesta al impulso.


Ley distributiva

f 1 t f 2 t f 3 t f 1 t f 2 t f 1 t f 3 t

La demostración de este teorema puede ser tomada directamente de la definición de convolución y usando la linealidad de la integral.

Desplazamiento en el tiempo

Propiedad de desplazamiento

Para c t f t h t , entonces

c t T f t T h t
c t T f t h t T

Demostración Gráfica de la propiedad de desplazamiento.

Convolución con un impulso

Convolución con impulso unitario

f t δ t f t

Para este demostración, dejaremos que δ t sea el impulso unitario localizado en el origen. Usando la definición de convolución empezamos con la integral de convolución

f t δ t τ δ τ f t τ
De la definición del impulso unitario, conocemos que δ τ 0 siempre que τ 0 . Usamos este hecho para reducir la ecuación anterior y obtener lo siguiente:
f t δ t τ δ τ f t f t τ δ τ
La integral de δ τ solo tendrá un valor cuando τ 0 (de la definición del impulso unitario), por lo tanto esa integral será igual a uno. Donde podemos simplificar la ecuación de nuestro teorema:
f t δ t f t

Las figuras y ecuaciones anteriores, revelan la función identidad del impulso unitario.


En tiempo continuo, si la Duración f 1 T 1 y la Duración f 2 T 2 , entonces

Duración f 1 f 2 T 1 T 2

En tiempo continuo, la duración de la convolución resulta igual a la suma de las longitudes de cada una de las dos señales convolucionadas.

En tiempo discreto si la Duración f 1 N 1 y la Duración f 2 N 2 , entonces

Duración f 1 f 2 N 1 N 2 1


Si f y h son ambas causales, entonces f h también es causal.

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
I'm not good at math so would you help me
what is the problem that i will help you to self with?
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Señales y sistemas. OpenStax CNX. Sep 28, 2006 Download for free at http://cnx.org/content/col10373/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Señales y sistemas' conversation and receive update notifications?