<< Chapter < Page Chapter >> Page >

This example shows that conducting this kind of data-driven approach to analysing complex biological data at the level of biological pathways can provide detailed information of the molecular processes contributing to the expression of these traits. The success of this work was primarily in data integration and the ability of the workflow to process large amounts of data in a consistent and automated fashion.

Workflow reuse

Workflows not only provide a description of the analysis being performed, but also serve as a permanent record of the experiment when coupled with the results and provenance of workflow runs. Researchers can verify past results by re-running the workflow or by exploring the intermediate results from past invocations. The same workflow can also be used with new data or modified and reused for further investigations.

The ability to reuse workflows and to automatically record provenance of workflow runs gives workflow management systems a large advantage over manual analysis methods and scripting. Manual analysis techniques are inherently difficult to replicate and are compounded by poor documentation. An example is the wide-spread use of ‘link integration’ in bioinformatics (Stein 2003). This process, of hyper-linking through any number of data resources, further exacerbates the problem of capturing the methods used for obtaining in silico results where it is often difficult to identify the essential data in the chain of hyper-linked resources.

Workflow reuse is also an important area within the sciences, and provides a mechanism for sharing methodologies and analysis protocols. As a result, repositories for finding and sharing workflows are emerging. One such resource, myExperiment , developed in collaboration between the Universities of Manchester and Southampton, provides a workflow repository and a collaborative social networking environment to support the in silico experimental process, and to enable scientists to connect with those with similar interests. The workflows dicussed in the trypanosomiasis use-case study are available on myExperiment , as part of a workflow pack. Many of these have already been reused in other studies. One such example includes the re-purposing of the microarray gene expression workflow to analyse gene expression data from E. Coli . This workflow appends a further workflow to include a means of information retrieval for future text mining applications (shown in Figure 1).


Manually processing and examining results in biology is no longer feasible for many scientists. Data is dynamic, distributed, and often very large. This will not change in the near future.

The integration and interoperation of data between different and distributed resources is a vital part of almost all experiments. With the exception of a few supercomputing centres, most institutions do not have the storage, computational, or curation facilities to consider integrating resources locally. The ability to access and utilise many different resources from all over the world is consequently a large advantage of workflow technologies. It allows scientists to access computing resources far beyond the power available through their own desktop machines.

Building workflows is a practical solution to problems involving access to data and applications, but care still needs to be taken to exploit these advantages. Interoperation without integration may lead to unmanageable results which are difficult to analyse. In this event, the problem has not been solved, but simply transferred further downstream. Considering how results will be used and who will be analysing them is important. For example, designing workflows to populate a data model, or to feed into external visualization software, could reduce these problems. The provenance traces of the workflow runs can also help scientists to explore their results.

Designing these ‘advanced’ workflows requires a significant amount of informatics knowledge that many laboratory researchers cannot be expected to have. They do, however, need to use tools and software to analyse their data. The introduction of workflow repositories, like myExperiment, provides the wider research communities with access to pre-configured, complex workflows. Researchers can re-use established analysis protocols by downloading and running them with their own data. In some circumstances, they can even run Taverna workflows through the myExperiment interface.

Increasingly, workflows are becoming applications that are hidden behind web pages like myExperiment, or other domain specific portals. Instead of stand-alone tools, they are becoming integral parts of virtual research environments, or e-Laboratories. Users may not necessarily know they are invoking workflows.

The use of workflows in research can reduce many problems associated with data distribution and size. In the post-genomic era of biology, for example, this is extremely important. Biomedical science is a multidisciplinary activity which can benefit from advances e-Science in equal measure to advances in laboratory techniques. Sharing workflows and in silico analysis methods, with tools like Taverna and myExperiment, can lead to significant contributions to research in this and other disciplines.


Altintas, I. et al. (2004). Kepler: an extensible system for design and execution of scientific workflows. Proceedings of the 16th International Conference on Scientific and Statistical Database Management

Fisher, P., Hedeler, C., Wolstencroft, K., Hulme, H., Noyes, H., Kemp, S., Stevens, R. and Brass, A. (2007). A systematic strategy for large-scale analysis of genotype phenotype correlations: identification of candidate genes involved in African trypanosomiasis. Nucleic Acids Resesearch , 35(16). pp. 5625-5633.

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P. and Oinn, T. (2006). Taverna: a tool for building and running workflows of services. Nucleic Acids Research , vol. 34, Web Server issue, W729-W732.

Stein, L. (2003). Integrating biological databases. Nat Rev Genet , 4(5). pp. 337-345.

Stevens, R. et al. (2004). Exploring Williams-Beuren syndrome using myGrid. Bioinformatics , 20 Suppl 1

Stevens, R. et al. (2008). Traversing the bioinformatics landscape. W. Dubitzky (ed.) Data Mining Techniques in Grid Computing Environments . John Wiley and Sons. pp. 141-164.

Taylor, I. et al. (2003). Triana Applications within Grid Computing and Peer to Peer Environments. Journal of Grid Computing , 1(2). pp. 199-217.

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
I'm not good at math so would you help me
what is the problem that i will help you to self with?
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Research in a connected world. OpenStax CNX. Nov 22, 2009 Download for free at http://cnx.org/content/col10677/1.12
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Research in a connected world' conversation and receive update notifications?