<< Chapter < Page Chapter >> Page >
Describes discrete time systems.

Introduction

As you already now know, a discrete time system operates on a discrete time signal input and produces a discrete time signal output. There are numerous examples of useful discrete time systems in digital signal processing, such as digital filters for images or sound. The class of discrete time systems that are both linear and time invariant, known as discrete time LTI systems, is of particular interest as the properties of linearity and time invariance together allow the use of some of the most important and powerful tools in signal processing.

Discrete time systems

Linearity and time invariance

A system H is said to be linear if it satisfies two important conditions. The first, additivity, states for every pair of signals x , y that H ( x + y ) = H ( x ) + H ( y ) . The second, homogeneity of degree one, states for every signal x and scalar a we have H ( a x ) = a H ( x ) . It is clear that these conditions can be combined together into a single condition for linearity. Thus, a system is said to be linear if for every signals x , y and scalars a , b we have that

H ( a x + b y ) = a H ( x ) + b H ( y ) .

Linearity is a particularly important property of systems as it allows us to leverage the powerful tools of linear algebra, such as bases, eigenvectors, and eigenvalues, in their study.

A system H is said to be time invariant if a time shift of an input produces the corresponding shifted output. In other, more precise words, the system H commutes with the time shift operator S T for every T Z . That is,

S T H = H S T .

Time invariance is desirable because it eases computation while mirroring our intuition that, all else equal, physical systems should react the same to identical inputs at different times.

When a system exhibits both of these important properties it opens. As will be explained and proven in subsequent modules, computation of the system output for a given input becomes a simple matter of convolving the input with the system's impulse response signal. Also proven later, the fact that complex exponential are eigenvectors of linear time invariant systems will encourage the use of frequency domain tools such as the various Fouier transforms and associated transfer functions, to describe the behavior of linear time invariant systems.

Consider the system H in which

H ( x [ n ] ) = 2 x [ n ]

for all signals f . Given any two signals f , g and scalars a , b

H ( a f [ n ] + b g [ n ] ) ) = 2 ( a f [ n ] + b g [ n ] ) = a 2 f [ n ] + b 2 g [ n ] = a H ( f [ n ] ) + b H ( g [ n ] )

for all integers n . Thus, H is a linear system. For all integers T and signals x ,

S T ( H ( x [ n ] ) ) = S T ( 2 x [ n ] ) = 2 x [ n - T ] = H ( x [ n - T ] ) = H ( S T ( x [ n ] ) )

for all integers n . Thus, H is a time invariant system. Therefore, H is a linear time invariant system.

Got questions? Get instant answers now!

Difference equation representation

It is often useful to to describe systems using equations involving the rate of change in some quantity. For discrete time systems, such equations are called difference equations, a type of recurrence relation. One important class of difference equations is the set of linear constant coefficient difference equations, which are described in more detail in subsequent modules.

Recall that the Fibonacci sequence describes a (very unrealistic) model of what happens when a pair rabbits get left alone in a black box... The assumptions are that a pair of rabbits never die and produce a pair of offspring every month starting on their second month of life. This system is defined by the recursion relation for the number of rabbit pairs y [ n ] at month n

y [ n ] = y [ n - 1 ] + y [ n - 2 ]

with the initial conditions y [ 0 ] = 0 and y [ 1 ] = 1 . The result is a very fast growth in the sequence. This is why we never leave black boxes open.

Got questions? Get instant answers now!

Discrete time systems summary

Many useful discrete time systems will be encountered in a study of signals and systems. This course is most interested in those that demonstrate both the linearity property and the time invariance property, which together enable the use of some of the most powerful tools of signal processing. It is often useful to describe them in terms of rates of change through linear constant coefficient difference equations, a type of recurrence relation.

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask