<< Chapter < Page Chapter >> Page >

Discrete-time signals are mathematical entities; in particular, they are functions with an independent time variable and a dependent variable that typically represents some kind of real-world quantity of interest. But as interesting as a signal may be on its own, engineers usually want to do something to it. This kind of action is what discrete-time systems are all about. A discrete-time system is a mathematical transformation that maps a discrete-time input signal (usually designated $x$) into a discrete-time output signal (usually designated $y$). In other words, it takes an input signal and modifies it to produce an output signal:

Image Image
System $\mathcal{H}$ takes takes a discrete time signal $x$ as an input and produces an output $y$.
There is no end to the possibilities of what a system could do. Systems might be trivially dull (e.g., produce an output of 0 regardless of the input) or incredibly complex (e.g., isolate a single voice speaking in a crowd). Here are a few examples of systems:
  • A speech recognition system converts acoustic waves of speech into text
  • A radar system transforms the received radar pulse to estimate the position and velocity of targets
  • A functional magnetic resonance imaging (fMRI) system transforms measurements of electron spin into voxel-by-voxel estimates of brain activity
  • A 30 day moving average smooths out the day-to-day variability in a stock price

Signal length and systems

Recall that discrete-time signals can be broadly divided into two classes based upon their length: they are either infinite length or finite length (and recall also that periodic signals, though infinite in length, can be viewed as finite-length signals when we take a single period into account). Likewise, discrete-time systems are also finite or infinite length, depending on the kind of input signals they take. Finite-length systems take in a finite-length input and produce a finite-length output (of the same length), with infinite-length systems doing the same for infinite-length signals.

Examples of discrete-time systems

So a system takes an input signal $x$ and produces an output signal $y$. How does this look, mathematically? Below are several examples of systems and their mathematical expression:
  • Identity: $y[n] = x[n]$
  • Scaling: $y[n] = 2\, x[n]$
  • Offset: $y[n] = x[n]+2$
  • Square signal: $y[n] = (x[n])^2$
  • Shift: $y[n] = x[n+m]\quad m\in Z$ \]
  • Decimate: $y[n] = x[2n]$
  • Square time: $y[n] = x[n^2]$
  • Moving average (combines shift, sum, scale): $y[n] = \frac{1}{2}(x[n]+x[n-1])$
  • Recursive average: $y[n] = x[n]+ \alpha\,y[n-1]$

So systems take input signals and produce output signals. We have seen some examples of systems, and have also introduced a broad categorization of systems as either operating on finite or infinite length signals.

Questions & Answers

Biology is a branch of Natural science which deals/About living Organism.
Ahmedin Reply
what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
cell is the smallest unit of the humanity biologically
Abraham
what is biology
Victoria Reply
what is biology
Abraham
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Discrete-time signals and systems. OpenStax CNX. Oct 07, 2015 Download for free at https://legacy.cnx.org/content/col11868/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete-time signals and systems' conversation and receive update notifications?

Ask