<< Chapter < Page Chapter >> Page >

Discrete-time signals are mathematical entities; in particular, they are functions with an independent time variable and a dependent variable that typically represents some kind of real-world quantity of interest. But as interesting as a signal may be on its own, engineers usually want to do something to it. This kind of action is what discrete-time systems are all about. A discrete-time system is a mathematical transformation that maps a discrete-time input signal (usually designated $x$) into a discrete-time output signal (usually designated $y$). In other words, it takes an input signal and modifies it to produce an output signal:

Image Image
System $\mathcal{H}$ takes takes a discrete time signal $x$ as an input and produces an output $y$.
There is no end to the possibilities of what a system could do. Systems might be trivially dull (e.g., produce an output of 0 regardless of the input) or incredibly complex (e.g., isolate a single voice speaking in a crowd). Here are a few examples of systems:
  • A speech recognition system converts acoustic waves of speech into text
  • A radar system transforms the received radar pulse to estimate the position and velocity of targets
  • A functional magnetic resonance imaging (fMRI) system transforms measurements of electron spin into voxel-by-voxel estimates of brain activity
  • A 30 day moving average smooths out the day-to-day variability in a stock price

Signal length and systems

Recall that discrete-time signals can be broadly divided into two classes based upon their length: they are either infinite length or finite length (and recall also that periodic signals, though infinite in length, can be viewed as finite-length signals when we take a single period into account). Likewise, discrete-time systems are also finite or infinite length, depending on the kind of input signals they take. Finite-length systems take in a finite-length input and produce a finite-length output (of the same length), with infinite-length systems doing the same for infinite-length signals.

Examples of discrete-time systems

So a system takes an input signal $x$ and produces an output signal $y$. How does this look, mathematically? Below are several examples of systems and their mathematical expression:
  • Identity: $y[n] = x[n]$
  • Scaling: $y[n] = 2\, x[n]$
  • Offset: $y[n] = x[n]+2$
  • Square signal: $y[n] = (x[n])^2$
  • Shift: $y[n] = x[n+m]\quad m\in Z$ \]
  • Decimate: $y[n] = x[2n]$
  • Square time: $y[n] = x[n^2]$
  • Moving average (combines shift, sum, scale): $y[n] = \frac{1}{2}(x[n]+x[n-1])$
  • Recursive average: $y[n] = x[n]+ \alpha\,y[n-1]$

So systems take input signals and produce output signals. We have seen some examples of systems, and have also introduced a broad categorization of systems as either operating on finite or infinite length signals.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Discrete-time signals and systems. OpenStax CNX. Oct 07, 2015 Download for free at https://legacy.cnx.org/content/col11868/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete-time signals and systems' conversation and receive update notifications?

Ask