<< Chapter < Page Chapter >> Page >

A programmer can sometimes improve performance by making the compiler aware of the constant values in your application. For example, in the following code segment:

X = X * Y

the compiler may generate quite different runtime code if it knew that Y was 0, 1, 2, or 175.32. If it does not know the value for Y , it must generate the most conservative (not necessarily the fastest) code sequence. A programmer can communicate these values through the use of the PARAMETER statement in FORTRAN. By the use of a parameter statement, the compiler knows the values for these constants at runtime. Another example we have seen is:

DO I = 1,10000 DO J=1,IDIM..... ENDDOENDDO

After looking at the code, it’s clear that IDIM was either 1, 2, or 3, depending on the data set in use. Clearly if the compiler knew that IDIM was 1, it could generate much simpler and faster code.

Dead code removal

Programs often contain sections of dead code that have no effect on the answers and can be removed. Occasionally, dead code is written into the program by the author, but a more common source is the compiler itself; many optimizations produce dead code that needs to be swept up afterwards.

Dead code comes in two types:

  • Instructions that are unreachable
  • Instructions that produce results that are never used

You can easily write some unreachable code into a program by directing the flow of control around it — permanently. If the compiler can tell it’s unreachable, it will eliminate it. For example, it’s impossible to reach the statement I = 4 in this program:


The compiler throws out everything after the STOP statement and probably gives you a warning. Unreachable code produced by the compiler during optimization will be quietly whisked away.

Computations with local variables can produce results that are never used. By analyzing a variable’s definitions and uses, the compiler can see whether any other part of the routine references it. Of course the compiler can’t tell the ultimate fate of variables that are passed between routines, external or common, so those computations are always kept (as long as they are reachable). If a compiler does sufficient interprocedural analysis, it can even optimize variables across routine boundaries. Interprocedural analysis can be the bane of benchmark codes trying to time a computation without using the results of the computation. In the following program, computations involving k contribute nothing to the final answer and are good candidates for dead code elimination:

main () {int i,k; i = k = 1;i += 1; k += 2;printf ("%d\n",i); }

Dead code elimination has often produced some amazing benchmark results from poorly written benchmarks. See [link] for an example of this type of code.

Strength reduction

Operations or expressions have time costs associated with them. Sometimes it’s possible to replace a more expensive calculation with a cheaper one. We call this strength reduction . The following code fragment contains two expensive operations:

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?